A fully "locking-free" isogeometric approach for plane linear elasticity problems: A stream function formulation

被引:192
作者
Auricchio, F.
da Veiga, L. Beirao
Buffa, A.
Lovadina, C.
Reali, A.
Sangalli, G.
机构
[1] Univ Pavia, Dipartimento Matemat, I-24100 Pavia, Italy
[2] Univ Pavia, Dipartimento Meccan Strutt, I-27100 Pavia, Italy
[3] IMATI, CNR, Pavia, Italy
[4] Univ Milan, Dipartimento Matemat, I-20122 Milan, Italy
关键词
incompressible elasticity; stream function formulation; isogeometric analysis; NURBS;
D O I
10.1016/j.cma.2007.07.005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study plane incompressible elastic problems by means of a "stream-function" formulation such that a divergence-free displacement field can be computed from a scalar potential. The numerical scheme is constructed within the framework of NURBS-based isogeometric analysis and we take advantage of the high continuity guaranteed by NURBS basis functions in order to obtain the displacement field from the potential differentiation. As a consequence, the obtained numerical scheme is automatically locking-free in the presence of the incompressibility constraint. A Discontinuous Galerkin approach is proposed to deal with multiple mapped, possibly multiply connected, domains. Extensive numerical results are provided to show the method capabilities. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:160 / 172
页数:13
相关论文
共 22 条
[1]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[2]  
2-B
[3]  
[Anonymous], 1979, FINITE ELEMENT APPRO, DOI DOI 10.1007/BFB0063447
[4]   TUBA FAMILY OF PLATE ELEMENTS FOR MATRIX DISP LACEMENT METHOD [J].
ARGYRIS, JH ;
FRIED, I ;
SCHARPF, DW .
AERONAUTICAL JOURNAL, 1968, 72 (692) :701-&
[5]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[6]   A family of Discontinuous Galerkin finite elements for the Reissner-Mindlin plate [J].
Arnold, DN ;
Brezzi, F ;
Marini, LD .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :25-45
[7]   An analysis of some mixed-enhanced finite element for plane linear elasticity [J].
Auricchio, F ;
da Veiga, LB ;
Lovadina, C ;
Reali, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (27-29) :2947-2968
[8]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[9]   C0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains [J].
Brenner, SC ;
Sung, LY .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :83-118
[10]   A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations [J].
Brenner, Susanne C. ;
Li, Fengyan ;
Sung, Li-Yeng .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :573-595