Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization

被引:150
作者
Goulet, Isabelle [1 ]
Gauvin, Gabrielle [1 ]
Boisvenue, Sophie [1 ]
Cote, Jocelyn [1 ]
机构
[1] Univ Ottawa, Dept Cellular & Mol Med, Ottawa, ON K1H 8M5, Canada
关键词
D O I
10.1074/jbc.M704349200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PRMT1 is the predominant member of a family of protein arginine methyltransferases (PRMTs) that have been implicated in various cellular processes, including transcription, RNA processing, and signal transduction. It was previously reported that the human PRMT1 pre-mRNA was alternatively spliced to yield three isoforms with distinct N-terminal sequences. Close inspection of the genomic organization in the 5'-end of the PRMT1 gene revealed that it can produce up to seven protein isoforms, all varying in their N-terminal domain. A detailed biochemical characterization of these variants revealed that unique N-terminal sequences can influence catalytic activity as well as substrate specificity. In addition, our results uncovered the presence of a functional nuclear export sequence in PRMT1v2. Finally, we find that the relative balance of PRMT1 isoforms is altered in breast cancer.
引用
收藏
页码:33009 / 33021
页数:13
相关论文
共 78 条
[1]   A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor [J].
Abramovich, C ;
Yakobson, B ;
Chebath, J ;
Revel, M .
EMBO JOURNAL, 1997, 16 (02) :260-266
[2]   Involvement of receptor-bound protein methyltransferase PRMT1 in antiviral and antiproliferative effects of type I interferons [J].
Altschuler, L ;
Wook, JO ;
Gurari, D ;
Chebath, J ;
Revel, M .
JOURNAL OF INTERFERON AND CYTOKINE RESEARCH, 1999, 19 (02) :189-195
[3]  
ANCZUKOW O, 2007, IN PRESS HUM MUTAT, V22, P119
[4]   FoxO3a regulates erythroid differentiation and induces BTG1, an activator of protein arginine methyl transferase 1 [J].
Bakker, WJ ;
Blázquez-Domingo, M ;
Kolbus, A ;
Besooyen, J ;
Steinlein, P ;
Beug, H ;
Coffer, PJ ;
Löwenberg, B ;
von Lindern, M ;
van Dijk, TB .
JOURNAL OF CELL BIOLOGY, 2004, 164 (02) :175-184
[5]   Arginine methylation: An emerging regulator of protein function [J].
Bedford, MT ;
Richard, S .
MOLECULAR CELL, 2005, 18 (03) :263-272
[6]   Arginine methylation inhibits the binding of proline-rich ligands to Src homology 3, but not WW, domains [J].
Bedford, MT ;
Frankel, A ;
Yaffe, MB ;
Clarke, S ;
Leder, P ;
Richard, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (21) :16030-16036
[7]   WW domain-mediated interactions reveal a spliceosome-associated protein that binds a third class of proline-rich motif: The proline glycine and methionine-rich motif [J].
Bedford, MT ;
Reed, R ;
Leder, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10602-10607
[8]   Interaction of PRMT1 with BTG/TOB proteins in cell signalling:: molecular analysis and functional aspects [J].
Berthet, C ;
Guéhenneux, F ;
Revol, V ;
Samarut, C ;
Lukaszewicz, A ;
Dehay, C ;
Dumontet, C ;
Magaud, JP ;
Rouault, JP .
GENES TO CELLS, 2002, 7 (01) :29-39
[9]   A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation [J].
Boiko, AD ;
Porteous, S ;
Razorenova, OV ;
Krivokrysenko, VI ;
Williams, BR ;
Gudkov, AV .
GENES & DEVELOPMENT, 2006, 20 (02) :236-252
[10]   Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control [J].
Boisvert, FM ;
Déry, U ;
Masson, JY ;
Richard, S .
GENES & DEVELOPMENT, 2005, 19 (06) :671-676