GroEL/GroES: Structure and function of a two-stroke folding machine

被引:98
作者
Xu, ZH
Sigler, PB
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[2] Yale Univ, Howard Hughes Med Inst, New Haven, CT 06520 USA
关键词
allosteric regulation; ATP; chaperonin; GroEL protein; GroES protein; protein folding;
D O I
10.1006/jsbi.1998.4060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent structural and functional studies have greatly advanced our understanding of the mechanism by which chaperonins (Cpn60) mediate protein folding, the final step in the accurate expression of genetic information. Escherichia coli GroEL has a symmetric double-toroid architecture, which binds nonnative polypeptide substrates on the hydrophobic walls of its central cavity. The asymmetric binding of ATP and cochaperonin GroES to GroEL triggers a major conformational change in the cis ring, creating an enlarged chamber into which the bound nonnative polypeptide is released. The structural changes that create the cis assembly also change the lining of the cavity wall from hydrophobic to hydrophilic, conducive to folding into the native state. ATP hydrolysis in the cis ring weakens it and primes the release of products. When ATP and GroES bind to the trans ring, it forms a stronger assembly, which disassembles the cis complex through negative cooperativity between rings. The opposing function of the two rings operates as if the system had two cylinders, one expelling the products of the reaction as the other loads up the reactants. One cycle of the reaction gives the polypeptide about 15 s to fold at the cost of seven ATP molecules. For some proteins, several cycles of GroEL assistance may be needed in order to achieve their native states. (C) 1998 Academic Press.
引用
收藏
页码:129 / 141
页数:13
相关论文
共 63 条
[1]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[2]  
[Anonymous], CHAPERONINS
[3]   CHARACTERIZATION OF A FUNCTIONAL GROEL(14)(GROES(7))(2) CHAPERONIN HETERO-OLIGOMER [J].
AZEM, A ;
KESSEL, M ;
GOLOUBINOFF, P .
SCIENCE, 1994, 265 (5172) :653-656
[4]   The protein-folding activity of chaperonins correlates with the symmetric GroEL(14)(GroES(7))(2) heterooligomer [J].
Azem, A ;
Diamant, S ;
Kessel, M ;
Weiss, C ;
Goloubinoff, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) :12021-12025
[5]  
BOCHKAREVA ES, 1992, J BIOL CHEM, V267, P6796
[6]   The 2.4 angstrom crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S [J].
Boisvert, DC ;
Wang, JM ;
Otwinowski, Z ;
Horwich, AL ;
Sigler, PB .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (02) :170-177
[7]   THE CRYSTAL-STRUCTURE OF THE BACTERIAL CHAPERONIN GROEL AT 2.8-ANGSTROM [J].
BRAIG, K ;
OTWINOWSKI, Z ;
HEGDE, R ;
BOISVERT, DC ;
JOACHIMIAK, A ;
HORWICH, AL ;
SIGLER, PB .
NATURE, 1994, 371 (6498) :578-586
[8]   A POLYPEPTIDE BOUND BY THE CHAPERONIN GROEL IS LOCALIZED WITHIN A CENTRAL CAVITY [J].
BRAIG, K ;
SIMON, M ;
FURUYA, F ;
HAINFELD, JF ;
HORWICH, AL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (09) :3978-3982
[9]   CONFORMATIONAL VARIABILITY IN THE REFINED STRUCTURE OF THE CHAPERONIN GROEL AT 2.8 ANGSTROM RESOLUTION [J].
BRAIG, K ;
ADAMS, PD ;
BRUNGER, AT .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (12) :1083-1094
[10]   GROE FACILITATES REFOLDING OF CITRATE SYNTHASE BY SUPPRESSING AGGREGATION [J].
BUCHNER, J ;
SCHMIDT, M ;
FUCHS, M ;
JAENICKE, R ;
RUDOLPH, R ;
SCHMID, FX ;
KIEFHABER, T .
BIOCHEMISTRY, 1991, 30 (06) :1586-1591