Repair of oxidized bases in DNA bubble structures by human DNA glycosylases NEIL1 and NEIL2

被引:279
作者
Dou, H
Mitra, S
Hazra, TK
机构
[1] Univ Texas, Med Branch, Sealy Ctr Mol Sci, Galveston, TX 77555 USA
[2] Univ Texas, Med Branch, Dept Human Biol Chem & Genet, Galveston, TX 77555 USA
关键词
D O I
10.1074/jbc.M308658200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Repair of oxidatively damaged bases in the genome via the base excision repair pathway is initiated with excision of these lesions by DNA glycosylases with broad substrate range. The newly discovered human DNA glycosylases, NEIL1 and NEIL2, are distinct in structural features and reaction mechanism from the previously characterized NTH1 and OGG1 but act on many of the same substrates. However, NEIL2 shows a unique preference for excising lesions from a DNA bubble, whereas NTH1 and OGG1 are only active with duplex DNA. NEIL1 also excises efficiently 5-hydroxyuracil, an oxidation product of cytosine, from the bubble and singlestranded DNA but does not have strong activity toward 8-oxoguanine in the bubble. The dichotomy in the activity of NEILs versus NTH1/OGG1 for bubble versus duplex DNA substrates is consistent with higher affinity of the NEILs for the bubble structures of both damaged and undamaged DNA relative to duplex structure. These observations suggest that the NEILs are functionally distinct from OGG1/NTH1 in vivo. OGG1/NTH1-independent repair of oxidized bases in the transcribed sequences supports the possibility that NEILs are preferentially involved in repair of lesions in DNA bubbles generated during transcription and/or replication.
引用
收藏
页码:49679 / 49684
页数:6
相关论文
共 41 条
[1]   A novel human DNA glycosylase that removes oxidative DNA damage and is homologous to Escherichia coli endonuclease VIII [J].
Bandaru, V ;
Sunkara, S ;
Wallace, SS ;
Bond, JP .
DNA REPAIR, 2002, 1 (07) :517-529
[2]   DNA-REPAIR IN AN ACTIVE GENE - REMOVAL OF PYRIMIDINE DIMERS FROM THE DHFR GENE OF CHO CELLS IS MUCH MORE EFFICIENT THAN IN THE GENOME OVERALL [J].
BOHR, VA ;
SMITH, CA ;
OKUMOTO, DS ;
HANAWALT, PC .
CELL, 1985, 40 (02) :359-369
[3]   REACTIONS OF OXYL RADICALS WITH DNA [J].
BREEN, AP ;
MURPHY, JA .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) :1033-1077
[4]   Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA [J].
Bruner, SD ;
Norman, DPG ;
Verdine, GL .
NATURE, 2000, 403 (6772) :859-866
[5]   RETRACTED: Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G (Retracted Article. See vol 308, pg 1740, 2005) [J].
Cooper, PK ;
Nouspikel, T ;
Clarkson, SG ;
Leadon, SA .
SCIENCE, 1997, 275 (5302) :990-993
[6]   Excision of products of oxidative DNA base damage by human NTH1 protein [J].
Dizdaroglu, M ;
Karahalil, B ;
Sentürker, S ;
Buckley, TJ ;
Roldán-Arjona, T .
BIOCHEMISTRY, 1999, 38 (01) :243-246
[7]   FORMATION OF CYTOSINE GLYCOL AND 5,6-DIHYDROXYCYTOSINE IN DEOXYRIBONUCLEIC-ACID ON TREATMENT WITH OSMIUM-TETROXIDE [J].
DIZDAROGLU, M ;
HOLWITT, E ;
HAGAN, MP ;
BLAKELY, WF .
BIOCHEMICAL JOURNAL, 1986, 235 (02) :531-536
[8]   OXIDATIVE STRESS - FREE-RADICAL PRODUCTION IN NEURAL DEGENERATION [J].
GOTZ, ME ;
KUNIG, G ;
RIEDERER, P ;
YOUDIM, MBH .
PHARMACOLOGY & THERAPEUTICS, 1994, 63 (01) :37-122
[9]   Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease [J].
Grisham, MB ;
Granger, DN ;
Lefer, DJ .
FREE RADICAL BIOLOGY AND MEDICINE, 1998, 25 (4-5) :404-433
[10]   Revisiting the rodent repairadox [J].
Hanawalt, PC .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2001, 38 (2-3) :89-96