TGF-β signaling in fibrosis

被引:1013
作者
Biernacka, Anna [1 ]
Dobaczewski, Marcin [1 ]
Frangogiannis, Nikolaos G. [1 ]
机构
[1] Albert Einstein Coll Med, Div Cardiol, Bronx, NY 10461 USA
关键词
TGF-beta; fibrosis; collagen; Smad; MAPK; GROWTH-FACTOR-BETA; MESENCHYMAL TRANSITION; EXTRACELLULAR-MATRIX; CARDIAC FIBROSIS; TRANSFORMING GROWTH-FACTOR-BETA-1; PULMONARY-FIBROSIS; LUNG FIBROSIS; ACTIVATION; FIBROBLASTS; KINASE;
D O I
10.3109/08977194.2011.595714
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transforming growth factor beta (TGF-beta) is a central mediator of fibrogenesis. TGF-beta is upregulated and activated in fibrotic diseases and modulates fibroblast phenotype and function, inducing myofibroblast transdifferentiation while promoting matrix preservation. Studies in a wide range of experimental models have demonstrated the involvement of the canonical activin receptor-like kinase 5/Smad3 pathway in fibrosis. Smad-independent pathways may regulate Smad activation and, under certain conditions, may directly transduce fibrogenic signals. The profibrotic actions of TGF-beta are mediated, at least in part, through induction of its downstream effector, connective tissue growth factor. In light of its essential role in the pathogenesis of fibrosis, TGF-beta has emerged as an attractive therapeutic target. However, the pleiotropic and multifunctional effects of TGF-beta and its role in tissue homeostasis, immunity and cell proliferation raise concerns regarding potential side effects that may be caused by TGF-beta blockade. This minireview summarizes the role of TGF-beta signaling pathways in the fibrotic response.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 63 条
[1]   Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β [J].
Abreu, JG ;
Ketpura, NI ;
Reversade, B ;
De Robertis, EM .
NATURE CELL BIOLOGY, 2002, 4 (08) :599-604
[2]   Making sense of latent TGFβ activation [J].
Annes, JP ;
Munger, JS ;
Rifkin, DB .
JOURNAL OF CELL SCIENCE, 2003, 116 (02) :217-224
[3]   Progressive pulmonary fibrosis is mediated by TGF-β isoform 1 but not TGF-β3 [J].
Ask, Kjetil ;
Bonniaud, Philippe ;
Maass, Katja ;
Eickelberg, Oliver ;
Margetts, Peter J. ;
Warburton, David ;
Groffen, John ;
Gauldie, Jack ;
Kolb, Martin .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2008, 40 (03) :484-495
[4]   Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration [J].
Bakin, AV ;
Tomlinson, AK ;
Bhowmick, NA ;
Moses, HL ;
Arteaga, CL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :36803-36810
[5]   TRANSFORMING GROWTH-FACTOR-BETA ACTIVATION IN IRRADIATED MARINE MAMMARY-GLAND [J].
BARCELLOSHOFF, MH ;
DERYNCK, R ;
TSANG, MLS ;
WEATHERBEE, JA .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (02) :892-899
[6]   Progressive transforming growth factor β1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor [J].
Bonniaud, P ;
Margetts, PJ ;
Kolb, M ;
Schroeder, JA ;
Kapoun, AM ;
Damm, D ;
Murphy, A ;
Chakravarty, S ;
Dugar, S ;
Higgins, L ;
Protter, AA ;
Gauldie, J .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2005, 171 (08) :889-898
[7]   Essential role of smad3 in infarct healing and in the pathogenesis of cardiac remodeling [J].
Bujak, Marcin ;
Ren, Guofeng ;
Kweon, Hyuk Jung ;
Dobaczewski, Marcin ;
Reddy, Anilkumar ;
Taffet, George ;
Wang, Xiao-Fan ;
Frangogiannis, Nikolaos G. .
CIRCULATION, 2007, 116 (19) :2127-2138
[8]   Imatinib mesylate inhibits the profibrogenic activity of TGF-β and prevents bleomycin-mediated lung fibrosis [J].
Daniels, CE ;
Wilkes, MC ;
Edens, M ;
Kottom, TJ ;
Murphy, SJ ;
Limper, AH ;
Leof, EB .
JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (09) :1308-1316
[9]   Smad-dependent and Smad-independent pathways in TGF-β family signalling [J].
Derynck, R ;
Zhang, YE .
NATURE, 2003, 425 (6958) :577-584
[10]  
DOBACZEWSKI M, 2010, J MOL CELL IN PRESS