In situ synthesis of poly(ethylene terephthalate) (PET) in ethylene glycol containing terephthalic acid and functionalized multiwalled carbon nanotubes (MWNTs) as an approach to MWNT/PET nanocomposites

被引:160
作者
Lee, HJ
Oh, SJ
Choi, JY
Kim, JW
Han, J
Tan, LS
Baek, JB [1 ]
机构
[1] Chungbuk Natl Univ, Sch Chem Engn, Cheongju 361763, Chungbuk, South Korea
[2] Saehan Ind Inc, Gumi 730707, Kyungpook, South Korea
[3] USAF, Res Lab, AFRL, MLBP,Polymer Branch,Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
关键词
D O I
10.1021/cm051218t
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwalled carbon nanotubes (MWNTs) (diameter range, 10-20 nm) were functionalized with 4-methoxybenzoic acid and 4-ethoxybenzoic acid via a Friedel-Crafts reaction in polyphosphoric acid to afford methoxybenzoyl- and ethoxybenzoyl-functionalized MWNTs. As-received MWNT, methoxybenzoyl-functionalized (MeO-MWNT), and ethoxybenzoyl-functionalized (EtO-MWNT) nanotubes were dispersed in ethylene glycol (EG). Because of the structural similarity, the mixture of EtO-MWNT (0.4 wt %) and EG was a homogeneous dispersion, whereas MeO-MWNT and pristine MWNT were dispersed in EG rather heterogeneously at the same loading. In situ polycondensation of EG and terephthalic acid in the presence of pristine MWNT, MeO-MWNT, or EtO-MWNT was carried out to generate the corresponding MWNT/PET, MeO-MWNT/PET, and EtO-MWNT/PET nanocomposites. High molecular weight poly(ethylene terephthalates) (PETs), with intrinsic viscosity range 0.6-0.7 dL/g (o-chlorophenol at 30 +/- 0.1 degrees C), were obtained in all cases. In comparing the images from scanning electron microscopy (SEM) taken at the same magnification for these nanocomposites, it is clear that the MWNT/PET system has poor MWNT dispersion and the MeO-MWNT/PET system has a better dispersion. However, EtO-MWNT in PET matrix is most homogeneously dispersed, and the interfacial boundary between EtO-MWNT and PET matrix is practically nondiscernible.
引用
收藏
页码:5057 / 5064
页数:8
相关论文
共 44 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Nanotube composite carbon fibers [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Rantell, T ;
Derbyshire, F ;
Chen, Y ;
Chen, J ;
Haddon, RC .
APPLIED PHYSICS LETTERS, 1999, 75 (09) :1329-1331
[4]   Grafting of vapor-grown carbon nanofibers via in-situ polycondensation of 3-phenoxybenzoic acid in poly(phosphoric acid) [J].
Baek, JB ;
Lyons, CB ;
Tan, LS .
MACROMOLECULES, 2004, 37 (22) :8278-8285
[5]   Covalent modification of vapour-grown carbon nanofibers via direct Friedel-Crafts acylation in polyphosphoric acid [J].
Baek, JB ;
Lyons, CB ;
Tan, LS .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (13) :2052-2056
[6]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[7]   Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J].
Bahr, JL ;
Tour, JM .
CHEMISTRY OF MATERIALS, 2001, 13 (11) :3823-+
[8]   Rational chemical strategies for carbon nanotube functionalization [J].
Banerjee, S ;
Kahn, MGC ;
Wong, SS .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :1899-1908
[9]   Reinforcement of polymers with carbon nanotubes:: The role of nanotube surface area [J].
Cadek, M ;
Coleman, JN ;
Ryan, KP ;
Nicolosi, V ;
Bister, G ;
Fonseca, A ;
Nagy, JB ;
Szostak, K ;
Béguin, F ;
Blau, WJ .
NANO LETTERS, 2004, 4 (02) :353-356
[10]   Ozonation of single-walled carbon nanotubes and their assemblies on rigid self-assembled monolayers [J].
Cai, LT ;
Bahr, JL ;
Yao, YX ;
Tour, JM .
CHEMISTRY OF MATERIALS, 2002, 14 (10) :4235-4241