Optimal partition and effective dynamics of complex networks

被引:75
作者
Weinan, E. [2 ,3 ,4 ]
Li, Tiejun [1 ,2 ]
Vanden-Eijnden, Eric [5 ]
机构
[1] Peking Univ, Lab Math & Appl Math, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[4] Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
[5] NYU, Courant Inst, New York, NY 10012 USA
关键词
partitioning; lumpability; MNCut; k means;
D O I
10.1073/pnas.0707563105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Given a large and complex network, we would like to find the best partition of this network into a small number of clusters. This question has been addressed in many different ways. Here we propose a strategy along the lines of optimal prediction for the Markov chains associated with the dynamics on these networks. We develop the necessary ingredients for such an optimal partition strategy, and we compare our strategy with the previous ones. We show that when the Markov chain is lumpable, we recover the partition with respect to which the chain is lumpable. We also discuss the case of well-clustered networks. Finally, we illustrate our strategy on several examples.
引用
收藏
页码:7907 / 7912
页数:6
相关论文
共 37 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
Capocci A, 2004, LECT NOTES COMPUT SC, V3243, P181
[3]  
Chorin AJ, 1999, COMMUN PUR APPL MATH, V52, P1231, DOI 10.1002/(SICI)1097-0312(199910)52:10<1231::AID-CPA3>3.0.CO
[4]  
2-C
[5]   Optimal prediction and the Mori-Zwanzig representation of irreversible processes [J].
Chorin, AJ ;
Hald, OH ;
Kupferman, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :2968-2973
[6]   Conditional expectations and renormalization [J].
Chorin, AJ .
MULTISCALE MODELING & SIMULATION, 2003, 1 (01) :105-118
[7]  
Chung FR., 1997, Spectral graph theory
[8]   Diffusion maps [J].
Coifman, Ronald R. ;
Lafon, Stephane .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) :5-30
[9]   Comparing community structure identification -: art. no. P09008 [J].
Danon, L ;
Díaz-Guilera, A ;
Duch, J ;
Arenas, A .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, :219-228
[10]   On the approximation of complicated dynamical behavior [J].
Dellnitz, M ;
Junge, O .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (02) :491-515