Cellular oligomerization of α-synuclein is determined by the interaction of oxidized catechols with a c-terminal sequence

被引:75
作者
Mazzulli, Joseph R.
Armakola, Maria
Dumoulin, Michelle
Parastatidis, Ioannis
Ischiropoulos, Harry [1 ]
机构
[1] Univ Penn, Childrens Hosp Philadelphia, Joseph Stokes Jr Res Inst, Philadelphia, PA 19104 USA
[2] Univ Penn, Childrens Hosp Philadelphia, Dept Pediat & Pharmacol, Philadelphia, PA 19104 USA
关键词
D O I
10.1074/jbc.M704737200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mechanisms that govern the formation of alpha-synuclein (alpha-syn) aggregates are not well understood but are considered a central event in the pathogenesis of Parkinson's disease (PD). A critically important modulator of alpha-syn aggregation in vitro is dopamine and other catechols, which can prevent the formation of alpha-syn aggregates in cell-free and cellular model systems. Despite the profound importance of this interaction for the pathogenesis of PD, the processes by which catechols alter alpha-syn aggregation are unclear. Molecular and biochemical approaches were employed to evaluate the mechanism of catechol-alpha-syn interactions and the effect on inclusion formation. The data show that the intracellular inhibition of alpha-syn aggregation requires the oxidation of catechols and the specific noncovalent interaction of the oxidized catechols with residues (YEMPS129)-Y-125 in the C-terminal region of the protein. Cell-free studies using novel near infrared fluorescence methodology for the detection of covalent protein-ortho-quinone adducts showed that although covalent modification of alpha-syn occurs, this does not affect alpha-syn fibril formation. In addition, oxidized catechols are unable to prevent both thermal and acid- induced protein aggregation as well as fibrils formed from a protein that lacks a YEMPS amino acid sequence, suggesting a specific effect for alpha-syn. These results suggest that inappropriate C-terminal cleavage of alpha-syn, which is known to occur in vivo in PD brain or a decline of intracellular catechol levels might affect disease progression, resulting in accelerated alpha-syn inclusion formation and dopaminergic neurodegeneration.
引用
收藏
页码:31621 / 31630
页数:10
相关论文
共 41 条
[1]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[2]   Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration [J].
Caudle, W. Michael ;
Richardson, Jason R. ;
Wang, Min Z. ;
Taylor, Tonya N. ;
Guillot, Thomas S. ;
McCormack, Alison L. ;
Colebrooke, Rebecca E. ;
Di Monte, Donato A. ;
Emson, Piers C. ;
Miller, Gary W. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (30) :8138-8148
[3]   α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease [J].
Chen, L ;
Feany, MB .
NATURE NEUROSCIENCE, 2005, 8 (05) :657-663
[4]   Kinetic stabilization of the α-synuclein protofibril by a dopamine-α-synuclein adduct [J].
Conway, KA ;
Rochet, JC ;
Bieganski, RM ;
Lansbury, PT .
SCIENCE, 2001, 294 (5545) :1346-1349
[5]   Glutamine deamidation destabilizes human γD-crystallin and lowers the kinetic barrier to unfolding [J].
Flaugh, Shannon L. ;
Mills, Ishara A. ;
King, Jonathan .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (41) :30782-30793
[6]   Parkinson-like syndrome induced by continuous MPTP infusion:: Convergent roles of the ubiquitin-proteasome system and α-synuclein [J].
Fornai, F ;
Schlüter, OM ;
Lenzi, P ;
Gesi, M ;
Ruffoli, R ;
Ferrucci, M ;
Lazzeri, G ;
Busceti, CL ;
Pontarelli, F ;
Battaglia, G ;
Pellegrini, A ;
Nicoletti, F ;
Ruggieri, S ;
Paparelli, A ;
Südhof, TC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (09) :3413-3418
[7]   Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions [J].
Giasson, BI ;
Duda, JE ;
Murray, IVJ ;
Chen, QP ;
Souza, JM ;
Hurtig, HI ;
Ischiropoulos, H ;
Trojanowski, JQ ;
Lee, VMY .
SCIENCE, 2000, 290 (5493) :985-989
[8]   Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein [J].
Giasson, BI ;
Duda, JE ;
Quinn, SM ;
Zhang, B ;
Trojanowski, JQ ;
Lee, VMY .
NEURON, 2002, 34 (04) :521-533
[9]   Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro [J].
Giasson, BI ;
Uryu, K ;
Trojanowski, JQ ;
Lee, VMY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7619-7622
[10]   A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly [J].
Giasson, BI ;
Murray, IVJ ;
Trojanowski, JQ ;
Lee, VMY .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (04) :2380-2386