NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding

被引:200
作者
Yao, J [1 ]
Chung, J [1 ]
Eliezer, D [1 ]
Wright, PE [1 ]
Dyson, HJ [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol MB2, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi002776i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Apomyoglobin forms a denatured state under low-salt conditions at pH 2.3. The conformational propensities and polypeptide backbone dynamics of this state have been characterized by NMR. Nearly complete backbone and some side chain resonance assignments have been obtained, using a triple-resonance assignment strategy tailored to low protein concentration (0.2 mM) and poor chemical shift dispersion. An estimate of the population and location of residual secondary structure has been made by examining deviations of C-13(alpha), (CO)-C-13, and H-1(alpha) chemical shifts from random coil values, scalar (3)J(HN),(H alpha) coupling constants and H-1-H-1 NOEs. Chemical shifts constitute a highly reliable indicator of secondary structural preferences, provided the appropriate random coil chemical shift references are used, but in the case of acid-unfolded apomyoglobin, (3)J(HN),(H alpha) coupling constants are poor diagnostics of secondary structure formation. Substantial populations of helical structure, in dynamic equilibrium with unfolded states, are formed in regions corresponding to the A and H helices of the folded protein. In addition, the deviation of the chemical shifts from random coil values indicates the presence of helical structure encompassing the D helix and extending into the first turn of the E helix. The polypeptide backbone dynamics of acid-unfolded apomyoglobin have been investigated using reduced spectral density function analysis of N-15 relaxation data. The spectral density J(omega (N)) is particularly sensitive to variations in backbone fluctuations on the picosecond to nanosecond time scale. The central region of the polypeptide spanning the C-terminal half of the E helix, the EF turn, and the F helix behaves as a free-flight random coil chain, but there is evidence from J(omega (N)) Of restricted motions on the picosecond to nanosecond time scale in the A and H helix regions where there is a propensity to populate helical secondary structure in the acid-unfolded state. Backbone fluctuations are also restricted in parts of the B and G helices due to formation of local hydrophobic clusters. Regions of restricted backbone flexibility are generally associated with large buried surface area. A significant increase in J(0) is observed for the NH resonances of some residues located in the A and G helices of the folded protein and is associated with fluctuations on a microsecond to millisecond time scale that probably arise from transient contacts between these distant regions of the polypeptide chain. Our results indicate that the equilibrium unfolded state of apomyoglobin formed at pH 2.3 is an excellent model for the events that are expected to occur in the earliest stages of protein folding, providing insights into the regions of the polypeptide that spontaneously undergo local hydrophobic collapse and sample nativelike secondary structure.
引用
收藏
页码:3561 / 3571
页数:11
相关论文
共 59 条
[1]   A COMPARISON OF THE PH, UREA, AND TEMPERATURE-DENATURED STATES OF BARNASE BY HETERONUCLEAR NMR - IMPLICATIONS FOR THE INITIATION OF PROTEIN-FOLDING [J].
ARCUS, VL ;
VUILLEUMIER, S ;
FREUND, SMV ;
BYCROFT, M ;
FERSHT, AR .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 254 (02) :305-321
[2]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[3]   AMIDE HYDROGEN-EXCHANGE IN A HIGHLY DENATURED STATE - HEN EGG-WHITE LYSOZYME IN UREA [J].
BUCK, M ;
RADFORD, SE ;
DOBSON, CM .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 237 (03) :247-254
[4]   SUPPRESSION OF CROSS-RELAXATION EFFECTS IN TOCSY SPECTRA VIA A MODIFIED DIPSI-2 MIXING SEQUENCE [J].
CAVANAGH, J ;
RANCE, M .
JOURNAL OF MAGNETIC RESONANCE, 1992, 96 (03) :670-678
[5]  
DYSON HJ, 1991, ANNU REV BIOPHYS BIO, V20, P519
[6]   Native and non-native secondary structure and dynamics in the pH 4 intermediate of apomyoglobin [J].
Eliezer, D ;
Chung, J ;
Dyson, HJ ;
Wright, PE .
BIOCHEMISTRY, 2000, 39 (11) :2894-2901
[7]  
Eliezer D, 1998, NAT STRUCT BIOL, V5, P148
[8]   HYDROPHOBIC CLUSTERING IN NONNATIVE STATES OF A PROTEIN - INTERPRETATION OF CHEMICAL-SHIFTS IN NMR-SPECTRA OF DENATURED STATES OF LYSOZYME [J].
EVANS, PA ;
TOPPING, KD ;
WOOLFSON, DN ;
DOBSON, CM .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1991, 9 (04) :248-266
[9]   BACKBONE DYNAMICS OF A FREE AND A PHOSPHOPEPTIDE-COMPLEXED SRC HOMOLOGY-2 DOMAIN STUDIED BY N-15 NMR RELAXATION [J].
FARROW, NA ;
MUHANDIRAM, R ;
SINGER, AU ;
PASCAL, SM ;
KAY, CM ;
GISH, G ;
SHOELSON, SE ;
PAWSON, T ;
FORMANKAY, JD ;
KAY, LE .
BIOCHEMISTRY, 1994, 33 (19) :5984-6003
[10]   SPECTRAL DENSITY-FUNCTION MAPPING USING N-15 RELAXATION DATA EXCLUSIVELY [J].
FARROW, NA ;
ZHANG, OW ;
SZABO, A ;
TORCHIA, DA ;
KAY, LE .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (02) :153-162