Comparative Analyses of Two Thermophilic Enzymes Exhibiting both β-1,4 Mannosidic and β-1,4 Glucosidic Cleavage Activities from Caldanaerobius polysaccharolyticus

被引:37
作者
Han, Yejun [1 ,2 ]
Dodd, Dylan [1 ,2 ,3 ]
Hespen, Charles W. [1 ,4 ]
Ohene-Adjei, Samuel [5 ]
Schroeder, Charles M. [1 ,6 ]
Mackie, Roderick I. [1 ,2 ,5 ]
Cann, Isaac K. O. [1 ,2 ,3 ,5 ]
机构
[1] Univ Illinois, Energy Biosci Inst, Urbana, IL 61801 USA
[2] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Anim Sci, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
关键词
ANION-EXCHANGE CHROMATOGRAPHY; CARBOHYDRATE-BINDING MODULES; HYDROLASE FAMILY 10; THERMOANAEROBACTERIUM-POLYSACCHAROLYTICUM; SUBSTRATE-BINDING; CRYSTAL-STRUCTURE; CELL-SURFACE; ACTIVE-SITE; MANNANASE; XYLANASE;
D O I
10.1128/JB.00257-10
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The hydrolysis of polysaccharides containing mannan requires endo-1,4-beta-mannanase and 1,4-beta-mannosidase activities. In the current report, the biochemical properties of two endo-beta-1,4-mannanases (Man5A and Man5B) from Caldanaerobius polysaccharolyticus were studied. Man5A is composed of an N-terminal signal peptide (SP), a catalytic domain, two carbohydrate-binding modules (CBMs), and three surface layer homology (SLH) repeats, whereas Man5B lacks the SP, CBMs, and SLH repeats. To gain insights into how the two glycoside hydrolase family 5 (GH5) enzymes may aid the bacterium in energy acquisition and also the potential application of the two enzymes in the biofuel industry, two derivatives of Man5A (Man5A-TM1 [TM1 stands for truncational mutant 1], which lacks the SP and SLH repeats, and Man5A-TM2, which lacks the SP, CBMs, and SLH repeats) and the wild-type Man5B were biochemically analyzed. The Man5A derivatives displayed endo-1,4-beta-mannanase and endo-1,4-beta-glucanase activities and hydrolyzed oligosaccharides with a degree of polymerization (DP) of 4 or higher. Man5B exhibited endo-1,4-beta-mannanase activity and little endo-1,4-beta-glucanase activity; however, this enzyme also exhibited 1,4-beta-mannosidase and cellodextrinase activities. Man5A-TM1, compared to either Man5A-TM2 or Man5B, had higher catalytic activity with soluble and insoluble polysaccharides, indicating that the CBMs enhance catalysis of Man5A. Furthermore, Man5A-TM1 acted synergistically with Man5B in the hydrolysis of beta-mannan and carboxymethyl cellulose. The versatility of the two enzymes, therefore, makes them a resource for depolymerization of mannan-containing polysaccharides in the biofuel industry. Furthermore, on the basis of the biochemical and genomic data, a molecular mechanism for utilization of mannan-containing nutrients by C. polysaccharolyticus is proposed.
引用
收藏
页码:4111 / 4121
页数:11
相关论文
共 32 条
[1]   The RAST server: Rapid annotations using subsystems technology [J].
Aziz, Ramy K. ;
Bartels, Daniela ;
Best, Aaron A. ;
DeJongh, Matthew ;
Disz, Terrence ;
Edwards, Robert A. ;
Formsma, Kevin ;
Gerdes, Svetlana ;
Glass, Elizabeth M. ;
Kubal, Michael ;
Meyer, Folker ;
Olsen, Gary J. ;
Olson, Robert ;
Osterman, Andrei L. ;
Overbeek, Ross A. ;
McNeil, Leslie K. ;
Paarmann, Daniel ;
Paczian, Tobias ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Reich, Claudia ;
Stevens, Rick ;
Vassieva, Olga ;
Vonstein, Veronika ;
Wilke, Andreas ;
Zagnitko, Olga .
BMC GENOMICS, 2008, 9 (1)
[2]   Molecular basis for the selectivity and specificity of ligand recognition by the family 16 carbohydrate-binding modules from Thermoanaerobacterium polysaccharolyticum ManA [J].
Bae, Brian ;
Ohene-Adjei, Samuel ;
Kocherginskaya, Svetlana ;
Mackie, Roderick I. ;
Spies, M. Ashley ;
Cann, Isaac K. O. ;
Nair, Satish K. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (18) :12415-12425
[3]   Three-dimensional structure of (1,4)-β-D-mannan mannanohydrolase from tomato fruit [J].
Bourgault, R ;
Oakley, AJ ;
Bewley, JD ;
Wilce, MCJ .
PROTEIN SCIENCE, 2005, 14 (05) :1233-1241
[4]   Molecular cloning, sequencing, and expression of a novel multidomain mannanase gene from Thermoanaerobacterium polysaccharolyticum [J].
Cann, IKO ;
Kocherginskaya, S ;
King, MR ;
White, BA ;
Mackie, RI .
JOURNAL OF BACTERIOLOGY, 1999, 181 (05) :1643-1651
[5]   Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp nov and Thermoanaerobacterium zeae sp nov., and emendation of the genus Thermoanaerobacterium [J].
Cann, IKO ;
Stroot, PG ;
Mackie, KR ;
White, BA ;
Mackie, RI .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2001, 51 :293-302
[6]   The Cellvibrio japonicus Mannanase CjMan26C Displays a Unique exo-Mode of Action That Is Conferred by Subtle Changes to the Distal Region of the Active Site [J].
Cartmell, Alan ;
Topakas, Evangelos ;
Ducros, Valerie M-A. ;
Suits, Michael D. L. ;
Davies, Gideon J. ;
Gilbert, Harry J. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (49) :34403-34413
[7]   The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved [J].
Charnock, SJ ;
Spurway, TD ;
Xie, HF ;
Beylot, MH ;
Virden, R ;
Warren, RAJ ;
Hazlewood, GP ;
Gilbert, HJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (48) :32187-32199
[8]   Recent structural insights into the expanding world of carbohydrate-active enzymes [J].
Davies, GJ ;
Gloster, TM ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2005, 15 (06) :637-645
[9]   Enzymatic deconstruction of xylan for biofuel production [J].
Dodd, Dylan ;
Cann, Isaac K. O. .
GLOBAL CHANGE BIOLOGY BIOENERGY, 2009, 1 (01) :2-17
[10]   Biochemical Analysis of a β-D-Xylosidase and a Bifunctional Xylanase-Ferulic Acid Esterase from a Xylanolytic Gene Cluster in Prevotella ruminicola 23 [J].
Dodd, Dylan ;
Kocherginskaya, Svetlana A. ;
Spies, M. Ashley ;
Beery, Kyle E. ;
Abbas, Charles A. ;
Mackie, Roderick I. ;
Cann, Isaac K. O. .
JOURNAL OF BACTERIOLOGY, 2009, 191 (10) :3328-3338