Exact T-duality between calorons and Taub-NUT spaces

被引:157
作者
Kraan, TC [1 ]
van Baal, P [1 ]
机构
[1] Leiden Univ, Inst Lorentz Theoret Phys, NL-2300 RA Leiden, Netherlands
关键词
D O I
10.1016/S0370-2693(98)00411-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We determine all SU(2) caloron solutions with topological charge one and arbitrary Polyakov loop at spatial infinity (with trace 2cos(2 pi omega)), using the Nahm duality transformation and ADHM. By explicit computations we show that the moduli space is given by a product of the base manifold R-3 x S-1 and a Taub-NUT space with mass M = 1/root(8 omega(1 - 2 omega)), for omega is an element of[0,1/2], in units where S-1=R/Z. Implications for finite temperature field theory and string duality between Kaluza-Klein and H-monopoles are briefly discussed. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:268 / 276
页数:9
相关论文
共 42 条
[1]  
Atiyah M. F., 1979, FERMI LECT
[2]   CONSTRUCTION OF INSTANTONS [J].
ATIYAH, MF ;
HITCHIN, NJ ;
DRINFELD, VG ;
MANIN, YI .
PHYSICS LETTERS A, 1978, 65 (03) :185-187
[3]  
ATIYAH MF, 1988, GEOMETRY DYNAMICS MA, pCH9
[4]   NAHM TRANSFORMATION FOR INSTANTONS [J].
BRAAM, PJ ;
VANBAAL, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (02) :267-280
[5]   CONSTRUCTION OF INSTANTON AND MONOPOLE SOLUTIONS AND RECIPROCITY [J].
CORRIGAN, E ;
GODDARD, P .
ANNALS OF PHYSICS, 1984, 154 (01) :253-279
[6]   GREEN-FUNCTION FOR GENERAL SELF-DUAL GAUGE FIELD [J].
CORRIGAN, EF ;
FAIRLIE, DB ;
TEMPLETON, S ;
GODDARD, P .
NUCLEAR PHYSICS B, 1978, 140 (01) :31-44
[7]  
CRAIGIE NS, 1982, MONOPOLES QUANTUM FI
[8]   D-branes, monopoles and Nahm equations [J].
Diaconescu, DE .
NUCLEAR PHYSICS B, 1997, 503 (1-2) :220-238
[9]  
Donaldon S.K., 1990, OXFORD MATH MONOGRAP
[10]   NAHM EQUATIONS AND THE CLASSIFICATION OF MONOPOLES [J].
DONALDSON, SK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (03) :387-407