Machine learning for molecular and materials science

被引:2975
作者
Butler, Keith T. [1 ]
Davies, Daniel W. [2 ]
Cartwright, Hugh [3 ]
Isayev, Olexandr [4 ]
Walsh, Aron [5 ,6 ]
机构
[1] Rutherford Appleton Lab, ISIS Facil, Harwell Campus, Harwell, Berks, England
[2] Univ Bath, Dept Chem, Bath, Avon, England
[3] Univ Oxford, Dept Chem, Oxford, England
[4] Univ North Carolina Chapel Hill, Eshelman Sch Pharm, Chapel Hill, NC USA
[5] Yonsei Univ, Dept Mat Sci & Engn, Seoul, South Korea
[6] Imperial Coll London, Dept Mat, London, England
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATIONAL CHEMISTRY; NEURAL-NETWORKS; DISCOVERY; DESIGN; COMPUTER;
D O I
10.1038/s41586-018-0337-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here we summarize recent progress in machine learning for the chemical sciences. We outline machine-learning techniques that are suitable for addressing research questions in this domain, as well as future directions for the field. We envisage a future in which the design, synthesis, characterization and application of molecules and materials is accelerated by artificial intelligence.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 100 条
[1]   Perspective: Materials informatics and big data: Realization of the "fourth paradigm" of science in materials science [J].
Agrawal, Ankit ;
Choudhary, Alok .
APL MATERIALS, 2016, 4 (05)
[2]   Low Data Drug Discovery with One-Shot Learning [J].
Altae-Tran, Han ;
Ramsundar, Bharath ;
Pappu, Aneesh S. ;
Pande, Vijay .
ACS CENTRAL SCIENCE, 2017, 3 (04) :283-293
[3]  
[Anonymous], 2004, Kernel Methods for Pattern Analysis
[4]   Stable and Efficient Linear Scaling First-Principles Molecular Dynamics for 10000+Atoms [J].
Arita, Michiaki ;
Bowler, David R. ;
Miyazaki, Tsuyoshi .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (12) :5419-5425
[5]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[6]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[7]   First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems [J].
Behler, Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (42) :12828-12840
[8]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[9]   The problem with determining atomic structure at the nanoscale [J].
Billinge, Simon J. L. ;
Levin, Igor .
SCIENCE, 2007, 316 (5824) :561-565
[10]  
Bonchev D, 1991, Chemical Graph Theory: Introduction and Fundamentals