Structure and thermoelectric properties of nanocomposite bismuth telluride prepared by melt spinning or by partially alloying with IV-VI compounds

被引:34
作者
Ebling, Dirk G.
Jacquot, A.
Jagle, M.
Bottner, H.
Kuhn, U.
Kirste, L.
机构
[1] Fraunhofer Inst Phys Messtech, Dept Thermoelect Syst, D-79110 Freiburg, Germany
[2] Leibniz Inst Festkorper & Werkstofforsch Dresden, Inst Komplexe Mat, D-01069 Dresden, Germany
[3] Fraunhofer Inst Appl Solid State Phys, D-79108 Freiburg, Germany
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2007年 / 1卷 / 06期
关键词
D O I
10.1002/pssr.200701174
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bismuth telluride samples are compared with respect to the evolution of their thermoelectric material parameters like thermal and electrical conductivity. The Seebeck coefficient is discussed in dependence on the melt spinning fabrication technique. The melt spinner used is only able to produce small thin ribbon shaped specimens, some as thin as 10 mu m. This limits melt spinning to mainly production of research specimens for alloys with high critical cooling rate, which are difficult to fabricate with other techniques. Additional parameters are alloying or doping of the base material by comparing the properties as prepared to different annealing conditions. The intrinsic p- and n-doped material was alloyed with up to 0.5% lead telluride by rapidly cooling the bulk material to improve the thermoelectric properties analysed from RT up to about 600 K. A Seebeck coefficient of well above 200 mu V/K could be obtained for p- and n-type materials. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:238 / 240
页数:3
相关论文
共 15 条
[1]   Microstructures and thermoelectric properties of Fe0.92Mn0.08Six alloys prepared by rapid solidification and hot pressing [J].
Chen, HY ;
Zhao, XB ;
Lu, YF ;
Mueller, E ;
Mrotzek, A .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (10) :6621-6626
[2]  
EBLING DG, IN PRESS
[3]  
ELAGINA EI, 1959, J INORG CHEM, V4, P738
[4]  
GLAZOV VM, 1986, IAN SSSR NEORG MATER, V22, P36
[5]   Quantum dot superlattice thermoelectric materials and devices [J].
Harman, TC ;
Taylor, PJ ;
Walsh, MP ;
LaForge, BE .
SCIENCE, 2002, 297 (5590) :2229-2232
[6]   PSEUDO-BINARY V2VI3-IV.VI COMPOUNDS SYSTEMS BI2TE3-PBTE BI2TE3-SNTE SB2TE3-PBTE SB2TE3-SNTE AND BI2SE3-SNSE [J].
HIRAI, T ;
TAKEDA, Y ;
KURATA, K .
JOURNAL OF THE LESS-COMMON METALS, 1967, 13 (03) :352-&
[7]   Cubic AgPbmSbTe2+m:: Bulk thermoelectric materials with high figure of merit [J].
Hsu, KF ;
Loo, S ;
Guo, F ;
Chen, W ;
Dyck, JS ;
Uher, C ;
Hogan, T ;
Polychroniadis, EK ;
Kanatzidis, MG .
SCIENCE, 2004, 303 (5659) :818-821
[8]   Electrical properties of Bi2-xSbxTe3 materials obtained by ultrarapid quenching [J].
Koukharenko, E ;
Fréty, N ;
Shepelevich, VG ;
Tedenac, JC .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 327 (1-2) :1-4
[9]   Electrical and microstructural properties of Bi2-xSbxTe and Bi2-xSbxTe2 foils obtained by the ultrarapid quenching process [J].
Kukharenka, E ;
Fréty, N ;
Shepelevich, VG ;
Tédenac, JC .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2003, 14 (5-7) :383-388
[10]   Effects of PbTe doping on the thermoelectric properties of (Bi2Te3)0.2(Sb2Te3)0.8 [J].
Kusano, D ;
Hori, Y .
XXI INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT '02, 2002, :13-16