Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia - A potential role in the pathogenesis of the disease

被引:135
作者
Pastore, A
Tozzi, G
Gaeta, LM
Bertini, E
Serafini, V
Di Cesare, S
Bonetto, V
Casoni, F
Carrozzo, R
Federici, G
Piemonte, F
机构
[1] Childrens Hosp & Res Inst Bambino Gesu, Mol Med Unit, I-00165 Rome, Italy
[2] Childrens Hosp & Res Inst Bambino Gesu, Flow Cytometr Unit, I-00165 Rome, Italy
[3] Childrens Hosp & Res Inst Bambino Gesu, Biochem Lab, I-00165 Rome, Italy
[4] Mario Negri Inst Pharmacol Res, Dulbecco Telethon Inst, I-20157 Milan, Italy
关键词
D O I
10.1074/jbc.M301872200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Increasing evidence suggests that iron-mediated oxidative stress might underlie the development of neurodegeneration in Friedreich's ataxia (FRDA), an autosomal recessive ataxia caused by decreased expression of frataxin, a protein implicated in iron metabolism. In this study, we demonstrate that, in fibroblasts of patients with FRDA, the cellular redox equilibrium is shifted toward more protein-bound glutathione. Furthermore, we found that actin is glutathionylated, probably as a result of the accumulation of reactive oxygen species, generated by iron overload in the disease. Indeed, high-pressure liquid chromatography analysis of control fibroblasts in vivo treated with FeSO4 showed a significant increase in the protein-bound/free GSH ratio, and Western blot analysis indicated a relevant rise in glutathionylation. Actin glutathionylation contributes to impaired microfilament organization in FRDA fibroblasts. Rhodamine phalloidin staining revealed a disarray of actin filaments and a reduced signal of F-actin fluorescence. The same hematoxylin/eosin-stained cells showed abnormalities in size and shape. When we treated FRDA fibroblasts with reduced glutathione, we obtained a complete rescue of cytoskeletal abnormalities and cell viability. Thus, we conclude that oxidative stress may induce actin glutathionylation and impairment of cytoskeletal functions in FRDA fibroblasts.
引用
收藏
页码:42588 / 42595
页数:8
相关论文
共 58 条
[1]   Protein oxidation in the brain in Alzheimer's disease [J].
Aksenov, MY ;
Aksenova, MV ;
Butterfield, DA ;
Geddes, JW ;
Markesbery, WR .
NEUROSCIENCE, 2001, 103 (02) :373-383
[2]   Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B [J].
Barrett, WC ;
DeGnore, JP ;
Keng, YF ;
Zhang, ZY ;
Yim, MB ;
Chock, PB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (49) :34543-34546
[3]   Dopamine biosynthesis is regulated by S-glutathionylation -: Potential mechanism of tyrosine hydroxylase inhibition during oxidative stress [J].
Borges, CR ;
Geddes, T ;
Watson, JT ;
Kuhn, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (50) :48295-48302
[4]   Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia [J].
Bradley, JL ;
Blake, JC ;
Chamberlain, S ;
Thomas, PK ;
Cooper, JM ;
Schapira, AHV .
HUMAN MOLECULAR GENETICS, 2000, 9 (02) :275-282
[5]  
BRANDWEIN HJ, 1981, J BIOL CHEM, V256, P2958
[6]   IDENTIFICATION AND QUANTITATION OF GLUTATHIONE IN HEPATIC PROTEIN MIXED DISULFIDES AND ITS RELATIONSHIP TO GLUTATHIONE DISULFIDE [J].
BRIGELIUS, R ;
MUCKEL, C ;
AKERBOOM, TPM ;
SIES, H .
BIOCHEMICAL PHARMACOLOGY, 1983, 32 (17) :2529-2534
[7]  
CAPPEL RE, 1989, J BIOL CHEM, V264, P9180
[8]   S-THIOLATION OF INDIVIDUAL HUMAN NEUTROPHIL PROTEINS INCLUDING ACTIN BY STIMULATION OF THE RESPIRATORY BURST - EVIDENCE AGAINST A ROLE FOR GLUTATHIONE DISULFIDE [J].
CHAI, YC ;
ASHRAF, SS ;
ROKUTAN, K ;
JOHNSTON, RB ;
THOMAS, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 310 (01) :273-281
[9]  
Chen ZF, 1998, J PHARMACOL EXP THER, V285, P608
[10]   Parkinson disease: A new link between monoamine oxidase and mitochondrial electron flow [J].
Cohen, G ;
Farooqui, R ;
Kesler, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :4890-4894