Equilibria for discrete kinetic equations

被引:29
作者
Karlin, IV
Succi, S
机构
[1] RAS, Ctr Comp, Krasnoyarsk 660036, Russia
[2] Ist Applicaz Calcolo, I-00161 Rome, Italy
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 04期
关键词
D O I
10.1103/PhysRevE.58.R4053
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a systematic method of constructing equilibria for kinetic models with discrete microscopic velocities. The approach is based on a suitable entropy maximum principle. The H theorem is demonstrated in the continuous and discrete space-time realizations. In addition, we discuss an extension of the Lattice Boltzmann method to irregular grids. [S1063-651X(98)50410-2].
引用
收藏
页码:R4053 / R4056
页数:4
相关论文
共 6 条
[1]  
KARLIN I, UNPUB
[2]   Maximum entropy principle for lattice kinetic equations [J].
Karlin, IV ;
Gorban, AN ;
Succi, S ;
Boffi, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (01) :6-9
[3]   LATTICE BGK MODELS FOR NAVIER-STOKES EQUATION [J].
QIAN, YH ;
DHUMIERES, D ;
LALLEMAND, P .
EUROPHYSICS LETTERS, 1992, 17 (6BIS) :479-484
[4]   Thermohydrodynamic lattice BGK schemes with non-perturbative equilibria [J].
Renda, A ;
Bella, G ;
Succi, S ;
Karlin, IV .
EUROPHYSICS LETTERS, 1998, 41 (03) :279-283
[5]  
van Kampen N.G, 1981, STOCHASTIC PROCESSES
[6]  
1997, INT J MOD PHYS C, V4