Protein structure determination by high-resolution solid-state NMR spectroscopy: Application to microcrystalline ubiquitin

被引:208
作者
Zech, SG
Wand, AJ
McDermott, AE
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
[2] Univ Penn, Johnson Res Fdn, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
D O I
10.1021/ja0503128
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-resolution solid-state NMR spectroscopy has become a promising method for the determination of three-dimensional protein structures for systems which are difficult to crystallize or exhibit low solubility. Here we describe the structure determination of microcrystalline ubiquitin using 2D C-13-C-13 correlation spectroscopy under magic angle spinning conditions. High-resolution C-13 spectra have been acquired from hydrated microcrystals of site-directed C-13-enriched ubiquitin. Interresidue carbon-carbon distance constraints defining the global protein structure have been evaluated from 'dipolar-assisted rotational resonance' experiments recorded at various mixing times. Additional constraints on the backbone torsion angles have been derived from chemical shift analysis. Using both distance and dihedral angle constraints, the structure of microcrystalline ubiquitin has been refined to a root-mean-square deviation of about 1 angstrom. The structure determination strategies for solid samples described herein are likely to be generally applicable to many proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy.
引用
收藏
页码:8618 / 8626
页数:9
相关论文
共 45 条
[1]  
[Anonymous], 2018, Protein nmr spectroscopy: principles and practice
[2]   CHEMICAL-SHIFT CORRELATION SPECTROSCOPY IN ROTATING SOLIDS - RADIO FREQUENCY-DRIVEN DIPOLAR RECOUPLING AND LONGITUDINAL EXCHANGE [J].
BENNETT, AE ;
OK, JH ;
GRIFFIN, RG ;
VEGA, S .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (11) :8624-8627
[3]   Solid state NMR sequential resonance assignments and conformational analysis of the 2 x 10.4 kDa dimeric form of the Bacillus subtilis protein Crh [J].
Böckmann, A ;
Lange, A ;
Galinier, A ;
Luca, S ;
Giraud, N ;
Juy, M ;
Heise, H ;
Montserret, R ;
Penin, F ;
Baldus, M .
JOURNAL OF BIOMOLECULAR NMR, 2003, 27 (04) :323-339
[4]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[5]   Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy [J].
Castellani, F ;
van Rossum, B ;
Diehl, A ;
Schubert, M ;
Rehbein, K ;
Oschkinat, H .
NATURE, 2002, 420 (6911) :98-102
[6]   Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis [J].
Castellani, F ;
van Rossum, BJ ;
Diehl, A ;
Rehbein, K ;
Oschkinat, H .
BIOCHEMISTRY, 2003, 42 (39) :11476-11483
[7]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[8]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293
[9]   Simple and efficient decoupling in magic-angle spinning solid-state NMR: the XiX scheme [J].
Detken, A ;
Hardy, EH ;
Ernst, M ;
Meier, BH .
CHEMICAL PHYSICS LETTERS, 2002, 356 (3-4) :298-304
[10]  
FRANKS WT, 2005, IN PRESS J AM CHEM S