Action and outcome encoding in the primate caudate nucleus

被引:133
作者
Lau, Brian [1 ]
Glimcher, Paul W. [1 ]
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
关键词
basal ganglia; oculomotor; reward; reinforcement learning; monkey; caudate;
D O I
10.1523/JNEUROSCI.3060-07.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The basal ganglia appear to have a central role in reinforcement learning. Previous experiments, focusing on activity preceding movement execution, support the idea that dorsal striatal neurons bias action selection according to the expected values of actions. However, many phasically active striatal neurons respond at a time too late to initiate or select movements. Given the data suggesting a role for the basal ganglia in reinforcement learning, postmovement activity may therefore reflect evaluative processing important for learning the values of actions. To better understand these postmovement neurons, we determined whether individual striatal neurons encode information about saccade direction, whether a reward had been received, or both. We recorded from phasically active neurons in the caudate nucleus while monkeys performed a probabilistically rewarded delayed saccade task. Many neurons exhibited peak responses after saccade execution (77 of 149) that were often tuned for the direction of the preceding saccade (61 of 77). Of those neurons responding during the reward epoch, one subset showed direction tuning for the immediately preceding saccade (43 of 60), whereas another subset responded differentially on rewarded versus unrewarded trials (35 of 60). We found that there was relatively little overlap of these properties in individual neurons. The encoding of action and outcome was performed by largely separate populations of caudate neurons that were active after movement execution. Thus, striatal neurons active primarily after a movement appear to be segregated into two distinct groups that provide complimentary information about the outcomes of actions.
引用
收藏
页码:14502 / 14514
页数:13
相关论文
共 68 条
[1]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[2]   INFLUENCE OF THE GLOBUS PALLIDUS ON ARM MOVEMENTS IN MONKEYS .3. TIMING OF MOVEMENT-RELATED INFORMATION [J].
ANDERSON, ME ;
HORAK, FB .
JOURNAL OF NEUROPHYSIOLOGY, 1985, 54 (02) :433-448
[3]  
[Anonymous], MODELS INFORM PROCES
[4]  
AOSAKI T, 1994, J NEUROSCI, V14, P3969
[5]   Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states [J].
Apicella, P ;
Legallet, E ;
Trouche, E .
EXPERIMENTAL BRAIN RESEARCH, 1997, 116 (03) :456-466
[6]   NEURONAL-ACTIVITY IN MONKEY STRIATUM RELATED TO THE EXPECTATION OF PREDICTABLE ENVIRONMENTAL EVENTS [J].
APICELLA, P ;
SCARNATI, E ;
LJUNGBERG, T ;
SCHULTZ, W .
JOURNAL OF NEUROPHYSIOLOGY, 1992, 68 (03) :945-960
[7]  
APICELLA P, 1991, EXP BRAIN RES, V85, P491
[8]   Independent coding of movement direction and reward prediction by single pallidal neurons [J].
Arkadir, D ;
Morris, G ;
Vaadia, E ;
Bergman, H .
JOURNAL OF NEUROSCIENCE, 2004, 24 (45) :10047-10056
[9]   Information processing, dimensionality reduction and reinforcement learning in the basal ganglia [J].
Bar-Gad, I ;
Morris, G ;
Bergman, H .
PROGRESS IN NEUROBIOLOGY, 2003, 71 (06) :439-473
[10]   Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories [J].
Barnes, TD ;
Kubota, Y ;
Hu, D ;
Jin, DZZ ;
Graybiel, AM .
NATURE, 2005, 437 (7062) :1158-1161