Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water

被引:178
作者
Hlavay, J [1 ]
Polyák, K [1 ]
机构
[1] Univ Veszprem, Dept Earth & Environm Sci, H-8201 Veszprem, Hungary
基金
匈牙利科学研究基金会;
关键词
iron hydroxide; alumina; arsenate; arsenite; adsorption; isotherms; zero point of charge; isoelectric points;
D O I
10.1016/j.jcis.2004.10.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel type adsorbent was prepared by in situ precipitation of Fe(OH)3 on the surface of activated Al2O3 as a support material. The iron content of the adsorbent was 0.31 +/- 0.003% m/m (56.1 mmol/g); its mechanical and chemical stability proved to be appropriate in solutions. The total capacity of the adsorbent was 0.12 mmol/g, and the pH of zero point of charge, pH(zpc) = 6.9 +/- 0.3. Depending on the pH of solutions, the adsorbent can be used for binding of both anions and cations, if pH(eq) < pH(zpc) anions are sorbed on the surface of adsorbent (S) through {S-OH2+} and {S-OH} groups. A graphical method was used for the determination of pH(iep) (isoelectric points) of the adsorbent and values of pH(iep) = 6.1 +/- 0.3 for As(III) and pH(iep) = 8.0 +/- 0.3 for As(V) ions were found. The amount of surface charged groups (Q) was about zero within the a pH range of 6.5-8.6, due to the practically neutral surface formed on the adsorption of As(V) ions. At acidic pH (pH 4.7), Q = 0.19 mol/kg was obtained. The adsorption of arsenate and arsenite ions from solutions of 0.1-0.4 mmol/L was represented by Langmuir-type isotherms. A great advantage of the adsorbent is that it can be used in adsorption columns, and low waste technology for removal of arsenic from drinking water can be developed. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 25 条
[1]   BIOSYNTHESIS AND RELEASE OF ORGANOARSENIC COMPOUNDS BY MARINE-ALGAE [J].
ANDREAE, MO ;
KLUMPP, D .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1979, 13 (06) :738-741
[2]   ADSORPTION OF POTENTIAL-DETERMINING IONS AT FERRIC OXIDE-AQUEOUS ELECTROLYTE INTERFACE [J].
ATKINSON, RJ ;
POSNER, AM ;
QUIRK, JP .
JOURNAL OF PHYSICAL CHEMISTRY, 1967, 71 (03) :550-&
[3]   Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat [J].
Berg, M ;
Tran, HC ;
Nguyen, TC ;
Pham, HV ;
Schertenleib, R ;
Giger, W .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2001, 35 (13) :2621-2626
[4]   ARSENIC IN DRINKING-WATER OF CITY OF ANTOFAGASTA - EPIDEMIOLOGICAL AND CLINICAL-STUDY BEFORE AND AFTER INSTALLATION OF A TREATMENT-PLANT [J].
BORGONO, JM ;
VICENT, P ;
VENTURINO, H ;
INFANTE, A .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1977, 19 (AUG) :103-105
[5]   ARSENIC IN GROUND-WATER IN 6 DISTRICTS OF WEST-BENGAL, INDIA - THE BIGGEST ARSENIC CALAMITY IN THE WORLD .1. ARSENIC SPECIES IN DRINKING-WATER AND URINE OF THE AFFECTED PEOPLE [J].
CHATTERJEE, A ;
DAS, D ;
MANDAL, BK ;
CHOWDHURY, TR ;
SAMANTA, G ;
CHAKRABORTI, D .
ANALYST, 1995, 120 (03) :643-650
[6]   ARSENIC SPECIES IN GROUNDWATERS OF THE BLACKFOOT DISEASE AREA, TAIWAN [J].
CHEN, SL ;
DZENG, SR ;
YANG, MH ;
CHIU, KH ;
SHIEH, GM ;
WAI, CM .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (05) :877-881
[7]   ARSENIC IN GROUND-WATER IN 6 DISTRICTS OF WEST-BENGAL, INDIA - THE BIGGEST ARSENIC CALAMITY IN THE WORLD .2. ARSENIC CONCENTRATION IN DRINKING-WATER, HAIR, NAILS, URINE, SKIN-SCALE AND LIVER-TISSUE (BIOPSY) OF THE AFFECTED PEOPLE [J].
DAS, D ;
CHATTERJEE, A ;
MANDAL, BK ;
SAMANTA, G ;
CHAKRABORTI, D ;
CHANDA, B .
ANALYST, 1995, 120 (03) :917-924
[8]   THE OXIDATION-STATES OF ARSENIC IN WELL-WATER FROM A CHRONIC ARSENICISM AREA OF NORTHERN MEXICO [J].
DELRAZO, LM ;
ARELLANO, MA ;
CEBRIAN, ME .
ENVIRONMENTAL POLLUTION, 1990, 64 (02) :143-153
[9]   Granular ferric hydroxide - a new adsorbent for the removal of arsenic from natural water [J].
Driehaus, W ;
Jekel, M ;
Hildebrandt, U .
JOURNAL OF WATER SERVICES RESEARCH AND TECHNOLOGY-AQUA, 1998, 47 (01) :30-35
[10]  
DZOMBACK DA, 1990, SURFACE COMPLEXATION, P94