Diversification and co-option of RAD-like genes in the evolution of floral asymmetry

被引:64
作者
Baxter, Catherine E. L. [1 ]
Costa, Maria Manuela R. [1 ]
Coen, Enrico S. [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Dept Cell & Dev Biol, Norwich NR4 7UH, Norfolk, England
关键词
RADIALIS; CYCLOIDEA; dorsoventral; duplication; evolution; divergence;
D O I
10.1111/j.1365-313X.2007.03222.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To understand how changes in gene regulatory networks lead to novel morphologies, we have analysed the evolution of a key target gene, RAD, controlling floral asymmetry. In Antirrhinum, flower asymmetry depends on activation of RAD in dorsal regions of the floral meristem by the upstream regulators CYC and DICH. We show that Arabidopsis, a species with radially symmetric flowers, contains six RAD-like genes, reflecting at least three duplications since the divergence of Antirrhinum and Arabidopsis. Unlike the situation in Antirrhinum, none of the Arabidopsis RAD-like genes are activated in dorsal regions of the flower meristem. Rather, the RAD-like genes are expressed in distinctive domains along radial or ab-adaxial axes, consistent with a range of developmental roles. Introduction of a RAD genomic clone from Antirrhinum into Arabidopsis leads to a novel expression pattern that is distinct from the expression pattern of RAD in Antirrhinum and from the endogenous RAD-like genes of Arabidopsis. Nevertheless, RAD is able to influence developmental targets in Arabidopsis, as ectopic expression of RAD has developmental effects in this species. Taken together, our results suggest that duplication and divergence of RAD-like genes has involved a range of cis- and trans-regulatory changes. It is possible that such changes led to the coupling of RAD to CYC regulation in the Antirrhinum lineage and hence the co-option of RAD had a role in the generation of flower dorsoventral asymmetry.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 36 条
[1]  
Almeida J, 1997, DEVELOPMENT, V124, P1387
[2]   The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins [J].
Barg, R ;
Sobolev, I ;
Eilon, T ;
Gur, A ;
Chmelnitsky, I ;
Shabtai, S ;
Grotewold, E ;
Salts, Y .
PLANTA, 2005, 221 (02) :197-211
[3]   Dynamic analyses of the expression of the HISTONE::YFP fusion protein in arabidopsis show that syncytial endosperm is divided in mitotic domains [J].
Boisnard-Lorig, C ;
Colon-Carmona, A ;
Bauch, W ;
Hodge, S ;
Doerner, P ;
Bancharel, E ;
Dumas, C ;
Haseloff, J ;
Berger, F .
PLANT CELL, 2001, 13 (03) :495-509
[4]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[5]   COMPLEMENTARY FLORAL HOMEOTIC PHENOTYPES RESULT FROM OPPOSITE ORIENTATIONS OF A TRANSPOSON AT THE PLENA-LOCUS OF ANTIRRHINUM [J].
BRADLEY, D ;
CARPENTER, R ;
SOMMER, H ;
HARTLEY, N ;
COEN, E .
CELL, 1993, 72 (01) :85-95
[6]   The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J].
Cannon S.B. ;
Mitra A. ;
Baumgarten A. ;
Young N.D. ;
May G. .
BMC Plant Biology, 4 (1)
[7]   Evolution in action: Following function in duplicated floral homeotic genes [J].
Causier, B ;
Castillo, R ;
Zhou, JL ;
Ingram, R ;
Xue, YB ;
Schwarz-Sommer, Z ;
Davies, B .
CURRENT BIOLOGY, 2005, 15 (16) :1508-1512
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]   Floral asymmetry involves an interplay between TO and MYB transcription factors in Antirrhinum [J].
Corley, SB ;
Carpenter, R ;
Copsey, L ;
Coen, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (14) :5068-5073
[10]   Evolution of regulatory interactions controlling floral asymmetry [J].
Costa, MMR ;
Fox, S ;
Hanna, AI ;
Baxter, C ;
Coen, E .
DEVELOPMENT, 2005, 132 (22) :5093-5101