Interdot interactions and band gap changes in CdSe nanocrystal arrays at elevated pressure

被引:94
作者
Kim, BS
Islam, MA
Brus, LE
Herman, IP [1 ]
机构
[1] Columbia Univ, Mat Res Sci & Engn Ctr, New York, NY 10027 USA
[2] Columbia Univ, Columbia Radiat Lab, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[4] Columbia Univ, Dept Chem, New York, NY 10027 USA
关键词
D O I
10.1063/1.1369405
中图分类号
O59 [应用物理学];
学科分类号
摘要
Three-dimensional arrays of organically passivated CdSe nanocrystals were investigated under hydrostatic pressure using photoluminescence (PL) and absorption spectroscopies. Interdot separations were varied coarsely by varying the organic ligand on the nanocrystal and finely by applying hydrostatic pressure. The PL and absorption spectra of solutions and arrays of CdSe nanocrystals capped by either tri-n-octylphosphine oxide or tri-n-butylphosphine oxide are the same up to 60 kbar, which suggests that they exhibit no interdot coupling since the interdot separations in the solutions (similar to 50 nm) are much greater than those in the arrays (less than or similar to 1 nm). While the variation with pressure is roughly that expected from the increase in band gap energy of bulk CdSe with pressure and the increase in confinement energies of electrons and holes with increased pressure, there is still a significant difference in the energy of the PL peak and the first exciton in absorption (the Stokes shift) for both these solutions and arrays that increases with pressure. This is attributed mostly to increased vibrational relaxation due to the movement of nuclei in the excited state. In contrast, there is a distinct difference between the pressure dependence of CdSe/pyridine dots in solution and arrays; the increase of the energy of the first exciton peak in absorption with pressure becomes markedly slower above about 30 kbar in CdSe/pyridine arrays, and is lower than that in the corresponding solution by similar to 50 meV at 50 kbar and similar to 70 meV at 60 kbar. Experiments with CdSe/shell/pyridine dots, with large electron and hole barriers, cast doubt on the mechanism of interdot electron and/or hole tunneling leading to a decrease in electron and/or hole confinement energy. Also, interdot tunneling of single carriers may be inhibited by the charge separation energy. The differences in the dielectric medium surrounding each dot in the solution and array explain their different absorption exciton energies at ambient pressure, but not the changes at elevated pressure. The observed loss of much of the pyridine ligands during array drying could be very significant, and contact between pyridine-capped dots at elevated pressure may be important. (C) 2001 American Institute of Physics.
引用
收藏
页码:8127 / 8140
页数:14
相关论文
共 49 条
[1]   Evolution from individual to collective electron states in a dense quantum dot ensemble [J].
Artemyev, MV ;
Bibik, AI ;
Gurinovich, LI ;
Gaponenko, SV ;
Woggon, U .
PHYSICAL REVIEW B, 1999, 60 (03) :1504-1506
[2]   INVESTIGATION OF THE SURFACE-MORPHOLOGY OF CAPPED CDSE NANOCRYSTALLITES BY P-31 NUCLEAR-MAGNETIC-RESONANCE [J].
BECERRA, LR ;
MURRAY, CB ;
GRIFFIN, RG ;
BAWENDI, MG .
JOURNAL OF CHEMICAL PHYSICS, 1994, 100 (04) :3297-3300
[3]   EFFECTS OF PRESSURE ON DENSITY DIELECTRIC CONSTANT AND VISCOSITY OF SEVERAL HYDROCARBONS AND OTHER ORGANIC LIQUIDS [J].
BRAZIER, DW ;
FREEMAN, GR .
CANADIAN JOURNAL OF CHEMISTRY, 1969, 47 (06) :893-&
[4]   QUANTUM CRYSTALLITES AND NONLINEAR OPTICS [J].
BRUS, L .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 53 (06) :465-474
[6]   Reversible tuning of silver quantum dot monolayers through the metal-insulator transition [J].
Collier, CP ;
Saykally, RJ ;
Shiang, JJ ;
Henrichs, SE ;
Heath, JR .
SCIENCE, 1997, 277 (5334) :1978-1981
[7]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[8]   Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe [J].
Danek, M ;
Jensen, KF ;
Murray, CB ;
Bawendi, MG .
CHEMISTRY OF MATERIALS, 1996, 8 (01) :173-180
[9]  
EFROS AL, 1982, SOV PHYS SEMICOND+, V16, P772
[10]   Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: Dark and bright exciton states [J].
Efros, AL ;
Rosen, M ;
Kuno, M ;
Nirmal, M ;
Norris, DJ ;
Bawendi, M .
PHYSICAL REVIEW B, 1996, 54 (07) :4843-4856