Linear scaling local coupled cluster theory with density fitting.: Part I:: 4-external integrals

被引:212
作者
Schütz, M
Manby, FR
机构
[1] Univ Stuttgart, Inst Theoret Chem, D-70569 Stuttgart, Germany
[2] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
关键词
D O I
10.1039/b304550a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The density fitting approximation is applied to the most expensive class of 2-electron integrals in local CCSD, i.e., to those integrals that involve four virtual orbitals ( or projected AOs). The fitting error in the correlation energy is systematic and considerably smaller than the deviation between the local and the canonical CCSD energy. In order to restore O(N) scaling locality must be exploited for the fitting functions as well as for orbitals. Local fitting domains specified for individual centre pairs provide an adequate basis for such a local description, however, Dunlap's robust formula for the approximate integrals then no longer simplifies to the usual expression known as the V approximation. A symmetric formula is proposed as an alternative, which, although formally non-robust, yields virtually the same results as the robust formalism. The additional fitting error due to the introduction of local fitting domains is considerably smaller than the original fitting error itself ( by at least an order of magnitude). Test calculations demonstrate O( N) scaling for the new LDF-LCCSD method. The approximate calculation of the 4-external integrals via density fitting in LDF-LCCSD is 10-100 times faster than the exact calculation via the O(N) 4-index transformation in LCCSD.
引用
收藏
页码:3349 / 3358
页数:10
相关论文
共 57 条
[1]   ELIMINATION OF ENERGY DENOMINATORS IN MOLLER-PLESSET PERTURBATION-THEORY BY A LAPLACE TRANSFORM APPROACH [J].
ALMLOF, J .
CHEMICAL PHYSICS LETTERS, 1991, 181 (04) :319-320
[2]   Linear scaling second-order Moller-Plesset theory in the atomic orbital basis for large molecular systems [J].
Ayala, PY ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (08) :3660-3671
[3]   Atomic orbital Laplace-transformed second-order Moller-Plesset theory for periodic systems [J].
Ayala, PY ;
Kudin, KN ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (21) :9698-9707
[4]   Self-consistent molecular Hartree-Fock-Slater calculations - I. The computational procedure [J].
Baerends, E. J. ;
Ellis, D. E. ;
Ros, P. .
CHEMICAL PHYSICS, 1973, 2 (01) :41-51
[5]   Large-scale correlated electronic structure calculations: The RI-MP2 method on parallel computers [J].
Bernholdt, DE ;
Harrison, RJ .
CHEMICAL PHYSICS LETTERS, 1996, 250 (5-6) :477-484
[6]   COMPARISON OF THE BOYS AND PIPEK-MEZEY LOCALIZATIONS IN THE LOCAL CORRELATION APPROACH AND AUTOMATIC VIRTUAL BASIS SELECTION [J].
BOUGHTON, JW ;
PULAY, P .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1993, 14 (06) :736-740
[7]  
Boys S. F., 1966, Quantum theory of atoms, molecules, and the solid state, P253
[8]  
Boys S. F., 1959, WISAF13 U WISC
[9]   Application and development of multiconfigurational localized perturbation theory [J].
Dunietz, BD ;
Friesner, RA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (24) :11052-11067
[10]   1ST-ROW DIATOMIC-MOLECULES AND LOCAL DENSITY MODELS [J].
DUNLAP, BI ;
CONNOLLY, JWD ;
SABIN, JR .
JOURNAL OF CHEMICAL PHYSICS, 1979, 71 (12) :4993-4999