Mixtures of g priors for Bayesian variable selection

被引:710
作者
Liang, Feng [1 ]
Paulo, Rui [2 ]
Molina, German [3 ]
Clyde, Merlise A. [4 ]
Berger, Jim O. [4 ]
机构
[1] Univ Illinois, Dept Stat, Urbana, IL 61820 USA
[2] Univ Tecn Lisboa, ISEG, Dept Math, P-1100 Lisbon, Portugal
[3] Tudor Investment Corp, London, England
[4] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
关键词
AIC; Bayesian model averaging; BIC; cauchy; empirical Bayes; Gaussian hypergeometric functions; model selection; Zellner-Siow priors;
D O I
10.1198/016214507000001337
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Zellner's g prior remains a popular conventional prior for use in Bayesian variable selection, despite several undesirable consistency issues. In this article we study mixtures of g priors as an alternative to default g priors that resolve many of the problems with the original formulation while maintaining the computational tractability that has made the g prior so popular. We present theoretical properties of the mixture g priors and provide real and simulated examples to compare the mixture formulation with fixed g priors, empirical Bayes approaches, and other default procedures.
引用
收藏
页码:410 / 423
页数:14
相关论文
共 43 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], DETERRENCE INCAPACIT
[3]   Optimal predictive model selection [J].
Barbieri, MM ;
Berger, JO .
ANNALS OF STATISTICS, 2004, 32 (03) :870-897
[4]  
Bartlett M. S., 1957, BIOMETRIKA, V44, P533, DOI [10.1093/biomet/44.3-4.533, DOI 10.1093/BIOMET/44.3-4.533]
[5]  
Berger J.O., 1998, Sankhya A, V60, P307
[6]  
BERGER JO, 2001, MODEL SELECTION, P135
[7]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[8]  
Butler RW, 2002, ANN STAT, V30, P1155
[9]   Objective Bayesian variable selection [J].
Casella, G ;
Moreno, E .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :157-167
[10]   Flexible empirical Bayes estimation for wavelets [J].
Clyde, M ;
George, EI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :681-698