Wave guide perturbative solutions for the Ginzburg-Landau equation. Infinite conductivity and discrete values of the critical temperature in superconductors

被引:5
作者
Agop, M
Buzea, CG
Rezlescu, N
Buzea, C
Marin, C
机构
[1] Inst Theoret Phys, Superconduct Res Lab, Iasi 6600, Romania
[2] Gh Asachi Tech Univ, Dept Phys, Iasi 6600, Romania
[3] Tohoku Univ, Elect Commun Res Inst, Aoba Ku, Sendai, Miyagi 98070, Japan
来源
PHYSICA C | 1999年 / 313卷 / 3-4期
关键词
wave guide; perturbative solutions; Ginzburg-Landau equation; infinite conductivity; superconductors;
D O I
10.1016/S0921-4534(98)00692-3
中图分类号
O59 [应用物理学];
学科分类号
摘要
We build perturbative solutions of the Ginzburg-Landau equation in the strong coupling limit, in terms of the elliptic functions cn and dn, Breaking of the soliton in 'soliton trains' is envisaged as a phenomenon similar to 'self-channeling' from the non-linear waves theory. Generalizing this last result for a cylindrical geometry, waves associated with the superconducting charge carriers are assimilated to a homogeneous wave family, namely a self-maintained wave guide. We state that wave guide perturbative solutions of the Ginzburg-Landau equation in the strong coupling limit account for the infinite conductivity and prompt for discrete values of the critical temperature in superconductors. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 6 条
[1]  
Abrikosov A., 1988, FUNDAMENTALS THEORY
[2]  
BOWMAN F, 1955, INTRO ELLIPTIC FUNCT
[3]   SELF-TRAPPING OF OPTICAL BEAMS [J].
CHIAO, RY ;
GARMIRE, E ;
TOWNES, CH .
PHYSICAL REVIEW LETTERS, 1964, 13 (15) :479-&
[4]  
Jackson EA, 1991, Perspectives of nonlinear dynamics, V1-2
[5]   Perturbative solutions of the Ginzburg-Landau equation and the superconducting parameters [J].
Rezlescu, N ;
Agop, M ;
Buzea, C ;
Buzea, CG .
PHYSICAL REVIEW B, 1996, 53 (05) :2229-2232
[6]  
TALANOV VI, 1964, RADIOFIZIKA, V7, P264