Comparison of ceramic and polymeric membranes for natural organic matter (NOM) removal

被引:59
作者
Lee, S [1 ]
Cho, J [1 ]
机构
[1] Kwangju Inst Sci & Technol, Dept Environm Sci & Engn, Gwangju 500712, South Korea
关键词
ceramic membrane; size exclusion; charge repulsion; natural organic matter; haloacetic acids;
D O I
10.1016/S0011-9164(04)90025-2
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ceramic membranes were compared with polymeric membranes with respect to natural organic matter (NOM) removal using two removal mechanisms (i.e., size exclusion and charge repulsion). NOM properties including molecular weight and molecular structure, at different charge densities, were examined, along with membrane characteristics, including molecular weight cut-off (MWCO) and surface charge. Integrated analyses of both NOM and membrane characteristics provided information for membrane evaluation of different membrane materials and configurations (i.e.. tubular vs. flat sheet type). A ceramic tight-ultrafiltration (UF) membrane showed the same potential as a similar nanofiltration (NF) polymeric membrane, in terms of the minimization of haloacetic acid (HAA) formation. Moreover, a ceramic UF membrane with a MWCO of 8000 Daltons showed almost the same behavior as an equitable polymeric UF membrane with a MWCO of 8000 Daltons in terms of NOM removal.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 15 条
[1]   ISOLATION OF HYDROPHILIC ORGANIC-ACIDS FROM WATER USING NONIONIC MACROPOROUS RESINS [J].
AIKEN, GR ;
MCKNIGHT, DM ;
THORN, KA ;
THURMAN, EM .
ORGANIC GEOCHEMISTRY, 1992, 18 (04) :567-573
[2]   Interactions between natural organic matter (NOM) and membranes: Rejection and fouling [J].
Amy, G ;
Cho, J .
WATER SCIENCE AND TECHNOLOGY, 1999, 40 (09) :131-139
[3]   Nanofiltration of natural organic matter: pH and ionic strength effects [J].
Braghetta, A ;
DiGiano, FA ;
Ball, WP .
JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 1997, 123 (07) :628-641
[4]   MOLECULAR-WEIGHT, POLYDISPERSITY, AND SPECTROSCOPIC PROPERTIES OF AQUATIC HUMIC SUBSTANCES [J].
CHIN, YP ;
AIKEN, G ;
OLOUGHLIN, E .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1994, 28 (11) :1853-1858
[5]   Membrane filtration of natural organic matter: factors and mechanisms affecting rejection and flux decline with charged ultrafiltration (UF) membrane [J].
Cho, J ;
Amy, G ;
Pellegrino, J .
JOURNAL OF MEMBRANE SCIENCE, 2000, 164 (1-2) :89-110
[6]   Membrane filtration of natural organic matter: Initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes [J].
Cho, JW ;
Amy, G ;
Pellegrino, J .
WATER RESEARCH, 1999, 33 (11) :2517-2526
[7]   MOLECULAR-WEIGHT DISTRIBUTION, CARBOXYLIC ACIDITY, AND HUMIC SUBSTANCES CONTENT OF AQUATIC ORGANIC-MATTER - IMPLICATIONS FOR REMOVAL DURING WATER-TREATMENT [J].
COLLINS, MR ;
AMY, GL ;
STEELINK, C .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1986, 20 (10) :1028-1032
[8]   MEASURING THE ZETA (ELECTROKINETIC) POTENTIAL OF REVERSE-OSMOSIS MEMBRANES BY A STREAMING POTENTIAL ANALYZER [J].
ELIMELECH, M ;
CHEN, WH ;
WAYPA, JJ .
DESALINATION, 1994, 95 (03) :269-286
[9]   Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes [J].
Escobar, IC ;
Hong, SK ;
Randall, AA .
JOURNAL OF MEMBRANE SCIENCE, 2000, 175 (01) :1-17
[10]   Determination of membrane pore size distribution using the fractional rejection of nonionic and charged macromolecules [J].
Lee, S ;
Park, G ;
Amy, G ;
Hong, SK ;
Moon, SH ;
Lee, DH ;
Cho, J .
JOURNAL OF MEMBRANE SCIENCE, 2002, 201 (1-2) :191-201