Perfect foresight and equilibrium selection in symmetric potential games

被引:36
作者
Hofbauer, J
Sorger, G
机构
[1] Univ Vienna, Dept Math, A-1090 Vienna, Austria
[2] Univ Vienna, Dept Econ, A-1210 Vienna, Austria
基金
奥地利科学基金会;
关键词
D O I
10.1006/jeth.1998.2485
中图分类号
F [经济];
学科分类号
02 ;
摘要
The equilibrium selection approach of Matsui and Matsuyama (J. Econ. Theory 65 (1995), 415-434) which is based on rational players who maximize their discounted future payoff, is analyzed for symmetric two-player games with a potential function. It is shown that the maximizer of the potential function is the unique state that is absorbing and globally accessible for small discount rates. (C) 1999 Academic Press.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 23 条
[1]  
ALOSFERRER C, 1998, 9801 U VIENN DEP EC
[2]  
Aubin J. P., 1984, Differential inclusions: Set-valued maps and viability theory
[3]   EXISTENCE THEOREMS FOR LAGRANGE CONTROL PROBLEMS WITH UNBOUNDED TIME DOMAIN [J].
BAUM, RF .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1976, 19 (01) :89-116
[4]   GLOBAL GAMES AND EQUILIBRIUM SELECTION [J].
CARLSSON, H ;
VANDAMME, E .
ECONOMETRICA, 1993, 61 (05) :989-1018
[5]  
Clarke F. H., 1983, OPTIMIZATION NONSMOO
[6]  
Harsanyi J. C., 1988, A general theory of equilibrium selection in games, V1
[7]  
Hofbauer J, 1998, VIEN CIR INST YEARBK, V5, P245
[8]  
Hofbauer J, 1988, THEORY EVOLUTION DYN
[9]  
Hofbauer J., 1995, STABILITY BEST RESPO
[10]   LEARNING, MUTATION, AND LONG-RUN EQUILIBRIA IN GAMES [J].
KANDORI, M ;
MAILATH, GJ ;
ROB, R .
ECONOMETRICA, 1993, 61 (01) :29-56