Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum)

被引:106
作者
Ralston, L
Kwon, ST
Schoenbeck, M
Ralston, J
Schenk, DJ
Coates, RM
Chappell, J [1 ]
机构
[1] Univ Kentucky, Dept Agron, Plant Physiol Biochem & Mol Biol Program, Lexington, KY 40546 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
5-epi-aristolochene hydroxylase; sesquiterpene cyclase; phytoalexin; cytochrome P450;
D O I
10.1006/abbi.2001.2483
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Capsidiol is a bicyclic, dihydroxylated sesquiterpene produced by several solanaceous species in response to a variety of environmental stimuli. It is the primary antimicrobial compound produced by Nicotiana tabacum in response to fungal elicitation, and it is formed via the isoprenoid pathway from 5-epi-aristolochene. Much of the biosynthetic pathway for the formation of this compound has been elucidated, except for the enzyme(s) responsible for the conversion of 5-epi-aristolochene to its dihydroxylated form, capsidiol. Biochemical evidence from previous studies with N. tabacum (Whitehead, I. M., Threlfall, D. R., and Ewing, D. F., 1989, Phytochemistry 28, 775-779) and Capsicum annuum Hoshino, T., Yamaura, T., Imaishi, H., Chida, M., Yoshizawa, Y., Higashi, K., Ohkawa, H., Mizutani, J., 1995, Phytochemistry 38, 609-613. suggested that the oxidation of 5-epi-aristolochene to capsidiol was mediated by at least one elicitor-inducible cytochrome P450 hydroxylase. In extending these observations, we developed an in vivo assay for 5-epi-aristolochene hydroxylase activity and used it to demonstrate a dose-dependent inhibition of activity by ancymidol and ketoconazole, two well characterized inhibitors of cytochrome P450 enzymes. Using degenerate oligonucleotide primers designed to the well conserved domains found within most P450 enzymes, including the heme binding domain, cDNA fragments representing four distinct P450 families (CYP71, CYP73, CYP82, and CYP92) were amplified from a cDNA library prepared against mRNA from elicitor-treated cells using PCR. The PCR fragments were subsequently used to isolate full-length cDNAs (CYP71D20 and D21, CYP73A27 and A28, CYP82E1 and CYP92A5), and these in turn were used to demonstrate that the corresponding mRNAs were all induced in elicitor-treated cells, albeit with different induction patterns. Representative, full-length cDNAs for each of the P450s were engineered into a yeast expression system, and the recombinant yeast assessed for functional expression of P450 protein by measuring the CO difference spectra of the yeast microsomes. Only microsomal preparations from yeast expressing the CYP71D20 and CYP92A5 cDNAs exhibited significant CO difference absorbance spectra at 450 nm and were thus tested for their ability to hydroxylate 5-epi-aristolochene and 1-deoxycapsidiol, a putative mono-hydroxylated intermediate in capsidiol biosynthesis. Interestingly, the CYP71D20-encoded enzyme activity was capable of converting both 5-epi-aristolochene and 1-deoxycapsidiol to capsidiol in vitro, consistent with the notion that this P450 enzyme catalyzes both hydroxylations of its hydrocarbon substrate. (C) 2001 Academic Press.
引用
收藏
页码:222 / 235
页数:14
相关论文
共 55 条
[1]   FURTHER OXIDATION OF HYDROXYCALCIDIOL BY CALCIDIOL 24-HYDROXYLASE - A STUDY WITH THE MATURE ENZYME EXPRESSED IN ESCHERICHIA-COLI [J].
AKIYOSHISHIBATA, M ;
SAKAKI, T ;
OHYAMA, Y ;
NOSHIRO, M ;
OKUDA, K ;
YABUSAKI, Y .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 224 (02) :335-343
[2]   CLONING AND BACTERIAL EXPRESSION OF A SESQUITERPENE CYCLASE FROM HYOSCYAMUS-MUTICUS AND ITS MOLECULAR COMPARISON TO RELATED TERPENE CYCLASES [J].
BACK, K ;
CHAPPELL, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (13) :7375-7381
[3]   EXPRESSION OF A PLANT SESQUITERPENE CYCLASE GENE IN ESCHERICHIA-COLI [J].
BACK, KW ;
YIN, SH ;
CHAPPELL, J .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1994, 315 (02) :527-532
[4]   Identifying functional domains within terpene cyclases using a domain-swapping strategy [J].
Back, KW ;
Chappell, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (13) :6841-6845
[5]   Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum [J].
Back, KW ;
He, SL ;
Kim, KU ;
Shin, DH .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (09) :899-904
[6]   SOME OXIDATION PRODUCTS OF ERGOSTA-7-14-22-TRIEN-3-BETA-YL ACETATE (ERGOSTEROL-B3 ACETATE) [J].
BARTON, DHR ;
LAWS, GF .
JOURNAL OF THE CHEMICAL SOCIETY, 1954, (JAN) :52-63
[7]   Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme [J].
Beckman, MJ ;
Tadikonda, P ;
Werner, E ;
Prahl, J ;
Yamada, S ;
DeLuca, HF .
BIOCHEMISTRY, 1996, 35 (25) :8465-8472
[8]   FATTY-ACID MONOOXYGENATION BY P450BM-3 - PRODUCT IDENTIFICATION AND PROPOSED MECHANISMS FOR THE SEQUENTIAL HYDROXYLATION REACTIONS [J].
BODDUPALLI, SS ;
PRAMANIK, BC ;
SLAUGHTER, CA ;
ESTABROOK, RW ;
PETERSON, JA .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 292 (01) :20-28
[9]   ACCUMULATION OF CAPSIDIOL IN TOBACCO CELL-CULTURES TREATED WITH FUNGAL ELICITOR [J].
CHAPPELL, J ;
NABLE, R ;
FLEMING, P ;
ANDERSEN, RA ;
BURTON, HR .
PHYTOCHEMISTRY, 1987, 26 (08) :2259-2260
[10]   BIOCHEMISTRY AND MOLECULAR-BIOLOGY OF THE ISOPRENOID BIOSYNTHETIC-PATHWAY IN PLANTS [J].
CHAPPELL, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1995, 46 :521-547