The architecture of pre-mRNAs affects mechanisms of splice-site pairing

被引:195
作者
Fox-Walsh, KL
Dou, YM
Lam, BJ
Hung, SP
Baldi, PF
Hertel, KJ [1 ]
机构
[1] Univ Calif Irvine, Dept Microbiol & Mol Genet, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Informat & Comp Sci, Irvine, CA 92697 USA
关键词
alternative splicing; bioinformatics; EST database; intron length;
D O I
10.1073/pnas.0508489102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The exon/intron architecture of genes determines whether components of the spliceosome recognize splice sites across the intron or across the exon. Using in vitro splicing assays, we demonstrate that splice-site recognition across introns ceases when intron size is between 200 and 250 nucleotides. Beyond this threshold, splice sites are recognized across the exon. Splice-site recognition across the intron is significantly more efficient than splice-site recognition across the exon, resulting in enhanced inclusion of exons with weak splice sites. Thus, intron size can profoundly influence the likelihood that an exon is constitutively or alternatively spliced. An EST-based alternative-splicing database was used to determine whether the exon/intron architecture influences the probability of alternative splicing in the Drosophila and human genomes. Drosophila exons flanked by long introns display an up to 90-fold-higher probability of being alternatively spliced compared with exons flanked by two short introns, demonstrating that the exon/ intron architecture in Drosophila is a major determinant in governing the frequency of alternative splicing. Exon skipping is also more likely to occur when exons are flanked by long introns in the human genome. Interestingly, experimental and computational analyses show that the length of the upstream intron is more influential in inducing alternative splicing than is the length of the downstream intron. We conclude that the size and location of the flanking introns control the mechanism of splice-site recognition and influence the frequency and the type of alternative splicing that a pre-mRNA transcript undergoes.
引用
收藏
页码:16176 / 16181
页数:6
相关论文
共 24 条
[1]   EXON RECOGNITION IN VERTEBRATE SPLICING [J].
BERGET, SM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) :2411-2414
[2]   ON OFF REGULATION OF GENE-EXPRESSION AT THE LEVEL OF SPLICING [J].
BINGHAM, PM ;
CHOU, TB ;
MIMS, I ;
ZACHAR, Z .
TRENDS IN GENETICS, 1988, 4 (05) :134-138
[3]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[4]   Finishing the euchromatic sequence of the human genome [J].
Collins, FS ;
Lander, ES ;
Rogers, J ;
Waterston, RH .
NATURE, 2004, 431 (7011) :931-945
[5]   Intron-exon structures of eukaryotic model organisms [J].
Deutsch, M ;
Long, M .
NUCLEIC ACIDS RESEARCH, 1999, 27 (15) :3219-3228
[6]   A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers [J].
Graveley, BR ;
Hertel, KJ ;
Maniatis, T .
EMBO JOURNAL, 1998, 17 (22) :6747-6756
[7]   LOCALIZATION OF SEQUENCES REQUIRED FOR SIZE-SPECIFIC SPLICING OF A SMALL DROSOPHILA INTRON IN-VITRO [J].
GUO, M ;
MOUNT, SM .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 253 (03) :426-437
[8]   MESSENGER-RNA SPLICING IN YEAST - CLUES TO WHY THE SPLICEOSOME IS A RIBONUCLEOPROTEIN [J].
GUTHRIE, C .
SCIENCE, 1991, 253 (5016) :157-163
[9]   Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays [J].
Johnson, JM ;
Castle, J ;
Garrett-Engele, P ;
Kan, ZY ;
Loerch, PM ;
Armour, CD ;
Santos, R ;
Schadt, EE ;
Stoughton, R ;
Shoemaker, DD .
SCIENCE, 2003, 302 (5653) :2141-2144
[10]   A general role for splicing enhancers in exon definition [J].
Lam, BJ ;
Hertel, KJ .
RNA, 2002, 8 (10) :1233-1241