IQGAP1 integrates Ca2+/calmodulin and B-Raf signaling

被引:42
作者
Ren, Jian-Guo
Li, Zhigang
Sacks, David B. [1 ]
机构
[1] Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M804626200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ca2+ and calmodulin modulate numerous cellular functions, ranging from muscle contraction to the cell cycle. Accumulating evidence indicates that Ca2+ and calmodulin regulate the MAPK signaling pathway at multiple positions in the cascade, but the molecular mechanism underlying these observations is poorly defined. We previously documented that IQGAP1 is a scaffold in the MAPK cascade. IQGAP1 binds to and regulates the activities of ERK, MEK, and B-Raf. Here we demonstrate that IQGAP1 integrates Ca2+ and calmodulin with B-Raf signaling. In vitro analysis reveals that Ca2+ promotes the direct binding of IQGAP1 to B-Raf. This interaction is inhibited by calmodulin in a Ca2+-regulated manner. Epidermal growth factor (EGF) is unable to stimulate B-Raf activity in fibroblasts treated with the Ca2+ ionophore A23187. In contrast, chelation of intracellular free Ca2+ concentrations ([Ca2+](i)) significantly enhances EGF-stimulated B-Raf activity, an effect that is dependent on IQGAP1. Incubation of cells with EGF augments the association of B-Raf with IQGAP1. Moreover, Ca2+ regulates the association of B-Raf with IQGAP1 in cells. Increasing [Ca2+](i) with Ca2+ ionophores significantly reduces co-immunoprecipitation of B- Raf and IQGAP1, whereas chelation of Ca2+ enhances the interaction. Consistent with these findings, increasing and decreasing [Ca2+](i) increase and decrease, respectively, co-immunoprecipitation of calmodulin with IQGAP1. Collectively, our data identify a previously unrecognized mechanism in which the scaffold protein IQGAP1 couples Ca2+ and calmodulin signaling to B-Raf function.
引用
收藏
页码:22972 / 22982
页数:11
相关论文
共 62 条
[1]   Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+, and calmodulin [J].
Agell, N ;
Bachs, O ;
Rocamora, N ;
Villalonga, P .
CELLULAR SIGNALLING, 2002, 14 (08) :649-654
[2]   3-DIMENSIONAL STRUCTURE OF CALMODULIN [J].
BABU, YS ;
SACK, JS ;
GREENHOUGH, TJ ;
BUGG, CE ;
MEANS, AR ;
COOK, WJ .
NATURE, 1985, 315 (6014) :37-40
[3]   The versatility and universality of calcium signalling [J].
Berridge, MJ ;
Lipp, P ;
Bootman, MD .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2000, 1 (01) :11-21
[4]   Calmodulin inhibitor W13 induces sustained activation of ERK2 and expression of p21cip1 [J].
Bosch, M ;
Gil, J ;
Bachs, O ;
Agell, N .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (34) :22145-22150
[5]   Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression [J].
Bourguignon, LYW ;
Gilad, E ;
Rothman, K ;
Peyrollier, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (12) :11961-11972
[6]   IQGAP proteins are integral components of cytoskeletal regulation [J].
Briggs, MW ;
Sacks, DB .
EMBO REPORTS, 2003, 4 (06) :571-574
[7]   IQGAP1 as signal integrator:: Ca2+, calmodulin, Cdc42 and the cytoskeleton [J].
Briggs, MW ;
Sacks, DB .
FEBS LETTERS, 2003, 542 (1-3) :7-11
[8]   IQGAP1-mediated stimulation of transcriptional co-activation by β-catenin is modulated by calmodulin [J].
Briggs, MW ;
Li, ZG ;
Sacks, DB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (09) :7453-7465
[9]   IQGAP1 in cellular signaling: bridging the GAP [J].
Brown, Matthew D. ;
Sacks, David B. .
TRENDS IN CELL BIOLOGY, 2006, 16 (05) :242-249
[10]   Increasing complexity of Ras signaling [J].
Campbell, SL ;
Khosravi-Far, R ;
Rossman, KL ;
Clark, GJ ;
Der, CJ .
ONCOGENE, 1998, 17 (11) :1395-1413