Functional orthopedic appliances correct dental malocclusion partially by exerting indirect mechanical stimulus on the condylar cartilage, modulating growth and the adaptation of orofacial structures. However, the exact nature of the biological responses to this therapy is not well understood. Insulin-like growth factors I and II (IGF-I and IGF-II) are important local factors during growth and differentiation of several tissues, including cartilage. The aim of this study was to verify the mRNA and protein expression of IGF-I and IGF-II in the condylar cartilage of young mate Wistar rats that used a mandibular propulsive appliance for 3, 5, 7, 9, 11, 13 or 15 days. For this purpose, sagittal sections of decalcified and paraffin-embedded condyles were submitted to immunohistochemistry and in situ hybridization. IGF-I and IGF-II expression increased with developmental age in the control and treated rats. After 9 days of treatment the positivity for both peptides in the animals that wore the propulsive appliance increased even more, expressively different from the age-matched controls. The expression patterns of both IGFs were similar, although IGF-I labelling was stronger. Furthermore, the enhanced expression of both peptides was in parallel with the proliferating cell nuclear antigen (PCNA) positivity, a proliferation cell marker. The modulation of IGF-I and IGF-II expression in the condylar cartilage in response to the propulsive appliance suggests that both peptides are involved in the mandibular adaptation during this therapy. (C) 2003 Elsevier Ltd. All rights reserved.