Practical and adequate approach to modeling light propagation in an adult head with low-scattering regions by use of diffusion theory

被引:24
作者
Koyama, T [1 ]
Iwasaki, A [1 ]
Ogoshi, Y [1 ]
Okada, E [1 ]
机构
[1] Keio Univ, Dept Elect & Elect Engn, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
D O I
10.1364/AO.44.002094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A practical and adequate approach to modeling light propagation in an adult head with a low-scattering cerebrospinal fluid (CSF) region by use of diffusion theory was investigated. The diffusion approximation does not hold in a nonscattering or low-scattering regions. The hybrid radiosity-diffusion method was adopted to model the light propagation in the head with a nonscattering region. In the hybrid method the geometry of the nonscattering region is acquired as a priori information. In reality, low-level scattering occurs in the CSF region and may reduce the error caused by the diffusion approximation. The partial optical path length and the spatial sensitivity profile calculated by the finite-element method agree well with those calculated by the Monte Carlo method in the case in which the transport scattering coefficient of the CSF layer is greater than 0.3 mm(-1). Because it is feasible to assume that the transport scattering coefficient of a CSF layer is 0.3 mm(-1), it is practical to adopt diffusion theory to the modeling of light propagation in an adult head as an alternative to the hybrid method. (c) 2005 Optical Society of America.
引用
收藏
页码:2094 / 2103
页数:10
相关论文
共 37 条
[1]   A FINITE-ELEMENT APPROACH FOR MODELING PHOTON TRANSPORT IN TISSUE [J].
ARRIDGE, SR ;
SCHWEIGER, M ;
HIRAOKA, M ;
DELPY, DT .
MEDICAL PHYSICS, 1993, 20 (02) :299-309
[2]   PHOTON-MEASUREMENT DENSITY-FUNCTIONS .2. FINITE-ELEMENT-METHOD CALCULATIONS [J].
ARRIDGE, SR ;
SCHWEIGER, M .
APPLIED OPTICS, 1995, 34 (34) :8026-8037
[3]   The finite element model for the propagation of light in scattering media: A direct method for domains with nonscattering regions [J].
Arridge, SR ;
Dehghani, H ;
Schweiger, M ;
Okada, E .
MEDICAL PHYSICS, 2000, 27 (01) :252-264
[4]   DIRECT CALCULATION OF THE MOMENTS OF THE DISTRIBUTION OF PHOTON TIME-OF-FLIGHT IN TISSUE WITH A FINITE-ELEMENT METHOD [J].
ARRIDGE, SR ;
SCHWEIGER, M .
APPLIED OPTICS, 1995, 34 (15) :2683-2687
[5]  
ARRIDGE SR, 1995, P SOC PHOTO-OPT INS, V2389, P378
[6]   Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging [J].
Barnett, AH ;
Culver, JP ;
Sorensen, AG ;
Dale, A ;
Boas, DA .
APPLIED OPTICS, 2003, 42 (16) :3095-3108
[7]   The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics [J].
Boas, DA ;
Gaudette, T ;
Strangman, G ;
Cheng, XF ;
Marota, JJA ;
Mandeville, JB .
NEUROIMAGE, 2001, 13 (01) :76-90
[8]   A novel method for fast imaging of brain function, non-invasively, with light [J].
Chance, B ;
Anday, E ;
Nioka, S ;
Zhou, S ;
Hong, L ;
Worden, K ;
Li, C ;
Murray, T ;
Ovetsky, Y ;
Pidikiti, D ;
Thomas, R .
OPTICS EXPRESS, 1998, 2 (10) :411-423
[9]  
CHONG WF, 1990, IEEE J QUANTUM ELECT, V26, P2166
[10]   THE RELATIONSHIP OF SURFACE REFLECTANCE MEASUREMENTS TO OPTICAL-PROPERTIES OF LAYERED BIOLOGICAL MEDIA [J].
CUI, WJ ;
OSTRANDER, LE .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1992, 39 (02) :194-201