Design and validation issues in RNA-seq experiments

被引:142
作者
Fang, Zhide [1 ]
Cui, Xiangqin [1 ]
机构
[1] Univ Alabama Birmingham, Dept Biostat, Sect Stat Genet, Birmingham, AL 35294 USA
关键词
experimental design; next-generation sequencing; RNA-seq; replicates; sample size; blocking; GENE-EXPRESSION; SAMPLE-SIZE; STRUCTURAL VARIATION; TRANSCRIPTOME; MICROARRAY; GENOME; POWER; RESOLUTION; LANDSCAPE; MAPS;
D O I
10.1093/bib/bbr004
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The next-generation sequencing technologies are being rapidly applied in biological research. Tens of millions of short sequences generated in a single experiment provide us enormous information on genome composition, genetic variants, gene expression levels and protein binding sites depending on the applications. Various methods are being developed for analyzing the data generated by these technologies. However, the relevant experimental design issues have rarely been discussed. In this review, we use RNA-seq as an example to bring this topic into focus and to discuss experimental design and validation issues pertaining to next-generation sequencing in the quantification of transcripts.
引用
收藏
页码:280 / 287
页数:8
相关论文
共 73 条
[1]   Inferences and power analysis concerning two negative binomial distributions with an application to MRI lesion counts data [J].
Aban, Inmaculada B. ;
Cutter, Gary R. ;
Mavinga, Nsoki .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) :820-833
[2]   Personalized copy number and segmental duplication maps using next-generation sequencing [J].
Alkan, Can ;
Kidd, Jeffrey M. ;
Marques-Bonet, Tomas ;
Aksay, Gozde ;
Antonacci, Francesca ;
Hormozdiari, Fereydoun ;
Kitzman, Jacob O. ;
Baker, Carl ;
Malig, Maika ;
Mutlu, Onur ;
Sahinalp, S. Cenk ;
Gibbs, Richard A. ;
Eichler, Evan E. .
NATURE GENETICS, 2009, 41 (10) :1061-U29
[3]   Microarray data analysis: from disarray to consolidation and consensus [J].
Allison, DB ;
Cui, XQ ;
Page, GP ;
Sabripour, M .
NATURE REVIEWS GENETICS, 2006, 7 (01) :55-65
[4]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[5]   Next-generation DNA sequencing techniques [J].
Ansorge, Wilhelm J. .
NEW BIOTECHNOLOGY, 2009, 25 (04) :195-203
[6]   Detection of splice junctions from paired-end RNA-seq data by SpliceMap [J].
Au, Kin Fai ;
Jiang, Hui ;
Lin, Lan ;
Xing, Yi ;
Wong, Wing Hung .
NUCLEIC ACIDS RESEARCH, 2010, 38 (14) :4570-4578
[7]   Statistical Design and Analysis of RNA Sequencing Data [J].
Auer, Paul L. ;
Doerge, R. W. .
GENETICS, 2010, 185 (02) :405-U32
[8]   Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach [J].
Bainbridge, Matthew N. ;
Warren, Rene L. ;
Hirst, Martin ;
Romanuik, Tammy ;
Zeng, Thomas ;
Go, Anne ;
Delaney, Allen ;
Griffith, Malachi ;
Hickenbotham, Matthew ;
Magrini, Vincent ;
Mardis, Elaine R. ;
Sadar, Marianne D. ;
Siddiqui, Asim S. ;
Marra, Marco A. ;
Jones, Steven J. M. .
BMC GENOMICS, 2006, 7 (1)
[9]   Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data [J].
Balwierz, Piotr J. ;
Carninci, Piero ;
Daub, Carsten O. ;
Kawai, Jun ;
Hayashizaki, Yoshihide ;
Van Belle, Werner ;
Beisel, Christian ;
van Nimwegen, Erik .
GENOME BIOLOGY, 2009, 10 (07)
[10]   Designing deep sequencing experiments: detecting structural variation and estimating transcript abundance [J].
Bashir, Ali ;
Bansal, Vikas ;
Bafna, Vineet .
BMC GENOMICS, 2010, 11