Penalized composite quasi-likelihood for ultrahigh dimensional variable selection

被引:117
作者
Bradic, Jelena [1 ]
Fan, Jianqing [1 ]
Wang, Weiwei [2 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Univ Texas Hlth Sci Ctr, Houston, TX USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Composite quasi-maximum likelihood estimation; Lasso; Model selection; Non-polynomial dimensionality; Oracle property; Robust statistics; Smoothly clipped absolute deviation; P-REGRESSION PARAMETERS; ASYMPTOTIC-BEHAVIOR; DIVERGING NUMBER; M-ESTIMATORS; LASSO; P2/N;
D O I
10.1111/j.1467-9868.2010.00764.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In high dimensional model selection problems, penalized least square approaches have been extensively used. The paper addresses the question of both robustness and efficiency of penalized model selection methods and proposes a data-driven weighted linear combination of convex loss functions, together with weighted L-1-penalty. It is completely data adaptive and does not require prior knowledge of the error distribution. The weighted L-1-penalty is used both to ensure the convexity of the penalty term and to ameliorate the bias that is caused by the L-1-penalty. In the setting with dimensionality much larger than the sample size, we establish a strong oracle property of the method proposed that has both the model selection consistency and estimation efficiency for the true non-zero coefficients. As specific examples, we introduce a robust method of composite L-1-L-2, and an optimal composite quantile method and evaluate their performance in both simulated and real data examples.
引用
收藏
页码:325 / 349
页数:25
相关论文
共 32 条
[1]  
BAI ZD, 1992, STAT SINICA, V2, P237
[2]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[3]   SOME ANALOGS TO LINEAR COMBINATIONS OF ORDER STATISTICS IN LINEAR MODEL [J].
BICKEL, PJ .
ANNALS OF STATISTICS, 1973, 1 (04) :597-616
[4]  
BICKEL PJ, 2008, ARXIV08011158V1
[5]   Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes [J].
Deutsch, S ;
Lyle, R ;
Dermitzakis, ET ;
Subrahmanyan, L ;
Gehrig, C ;
Parand, L ;
Gagnebin, M ;
Rougemont, J ;
Jongeneel, CV ;
Antonarakis, SE .
HUMAN MOLECULAR GENETICS, 2005, 14 (23) :3741-3749
[6]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[7]  
FAN J, 2010, ANN STAT UNPUB
[8]  
FAN J, 2010, ANN STAT IN PRESS
[9]   Sure independence screening for ultrahigh dimensional feature space [J].
Fan, Jianqing ;
Lv, Jinchi .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :849-883
[10]  
Fan JQ, 2009, J MACH LEARN RES, V10, P2013