Space complexity of estimation of distribution algorithms

被引:19
作者
Gao, Y [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
关键词
estimation of distribution algorithms; space complexity; additive fitness functions; graphical models and bayesian networks; treewidth;
D O I
10.1162/1063656053583423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the space complexity of the Estimation of Distribution Algorithms (EDAs), a class of sampling-based variants of the genetic algorithm. By analyzing the nature of EDAs, we identify criteria that characterize the space complexity of two typical implementation schemes of EDAs, the factorized distribution algorithm and Bayesian network-based algorithms. Using random additive functions as the prototype, we prove that the space complexity of the factorized distribution algorithm and Bayesian network-based algorithms is exponential in the problem size even if the optimization problem has a very sparse interaction structure.
引用
收藏
页码:125 / 143
页数:19
相关论文
共 34 条
  • [1] [Anonymous], 1989, GENETIC ALGORITHM SE
  • [2] [Anonymous], P UAI
  • [3] Becker A, 1996, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P81
  • [4] Bodlaender H. L., 1997, Mathematical Foundations of Computer Science 1997. 22nd International Symposium, MFCS'97 Proceedings, P19, DOI 10.1007/BFb0029946
  • [5] Treewidth and minimum fill-in:: Grouping the minimal separators
    Bouchitté, V
    Todinca, I
    [J]. SIAM JOURNAL ON COMPUTING, 2001, 31 (01) : 212 - 232
  • [6] BRAUNSTEIN A, 2003, ARXIVCONDMAT0212451
  • [7] On the Futility of Blind Search: An Algorithmic View of "No Free Lunch"
    Culberson, Joseph C.
    [J]. EVOLUTIONARY COMPUTATION, 1998, 6 (02) : 109 - 127
  • [8] Bucket elimination: A unifying framework for reasoning
    Dechter, R
    [J]. ARTIFICIAL INTELLIGENCE, 1999, 113 (1-2) : 41 - 85
  • [9] Evolution of networks
    Dorogovtsev, SN
    Mendes, JFF
    [J]. ADVANCES IN PHYSICS, 2002, 51 (04) : 1079 - 1187
  • [10] ETXEBERRIA R, 1999, P 2 S ART INT AD SYS, P314