Barstar has a highly dynamic hydrophobic core: Evidence from molecular dynamics simulations and nuclear magnetic resonance relaxation data

被引:65
作者
Wong, KB [1 ]
Daggett, V [1 ]
机构
[1] Univ Washington, Dept Med Chem, Seattle, WA 98195 USA
关键词
D O I
10.1021/bi980552i
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The dynamic behavior of the ribonuclease inhibitor barstar has been investigated by molecular dynamics (MD) simulations in explicit water. Two 2.5 ns MD simulations were performed, and an ensemble of 25 000 structures was generated. This ensemble reproduces the solution structures and is consistent with the experimental structural restraints from NMR spectroscopy. Reorientation of the backbone NH bond vectors and side chain methyl groups was monitored by calculation of autocorrelation functions and the generalized S-2 Order parameters. Order parameters derived for motion in the similar to 100 ps time scale were compared with those obtained from NMR relaxation measurements. Consistent with experiment, the backbone NH bond vectors were relatively rigid. In contrast, the side chain methyl groups exhibited a wide dynamic range, from restricted motion comparable to that of the backbone to rapid unrestricted motion. The order parameters for the methyl groups correlate well with their spatial separation from the backbone and are residue-type dependent. Smaller S-axis(2) values were observed for leucine methyl groups, in part due to side chain hopping between two predominant rotamers (g(+)t and tg(-)). Motions such as the flipping of aromatic rings and the hopping of leucine side chains were prevalent within the hydrophobic core, suggesting that the core is fluid-like with low energy barriers between native conformational substates. Thus, our studies suggest that the entropy of the native state can be significant and should not be discounted in thermodynamic considerations of protein folding. On the basis of our results, the side chain motion represents the primary source of the residual entropy of the native state and entropic considerations based solely on backbone dynamics would be incomplete.
引用
收藏
页码:11182 / 11192
页数:11
相关论文
共 54 条
[1]   THERMODYNAMICS OF DENATURATION OF BARSTAR - EVIDENCE FOR COLD DENATURATION AND EVALUATION OF THE INTERACTION WITH GUANIDINE-HYDROCHLORIDE [J].
AGASHE, VR ;
UDGAONKAR, JB .
BIOCHEMISTRY, 1995, 34 (10) :3286-3299
[2]   Active barnase variants with completely random hydrophobic cores [J].
Axe, DD ;
Foster, NW ;
Fersht, AR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (11) :5590-5594
[3]   CHARACTERIZATION OF LEUCINE SIDE-CHAIN REORIENTATION IN COLLAGEN FIBRILS BY SOLID-STATE H-2 NMR [J].
BATCHELDER, LS ;
SULLIVAN, CE ;
JELINSKI, LW ;
TORCHIA, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (02) :386-389
[4]   PROTEIN-PROTEIN RECOGNITION - CRYSTAL STRUCTURAL-ANALYSIS OF A BARNASE BARSTAR COMPLEX AT 2.0-ANGSTROM RESOLUTION [J].
BUCKLE, AM ;
SCHREIBER, G ;
FERSHT, AR .
BIOCHEMISTRY, 1994, 33 (30) :8878-8889
[5]   A 500-PS MOLECULAR-DYNAMICS SIMULATION STUDY OF INTERLEUKIN-1-BETA IN WATER - CORRELATION WITH NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY AND CRYSTALLOGRAPHY [J].
CHANDRASEKHAR, I ;
CLORE, GM ;
SZABO, A ;
GRONENBORN, AM ;
BROOKS, BR .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (01) :239-250
[6]   ANALYSIS OF THE BACKBONE DYNAMICS OF INTERLEUKIN-1-BETA USING 2-DIMENSIONAL INVERSE DETECTED HETERONUCLEAR N-15-H-1 NMR-SPECTROSCOPY [J].
CLORE, GM ;
DRISCOLL, PC ;
WINGFIELD, PT ;
GRONENBORN, AM .
BIOCHEMISTRY, 1990, 29 (32) :7387-7401
[7]   DYNAMICS OF FD-COAT PROTEIN IN THE BACTERIOPHAGE [J].
COLNAGO, LA ;
VALENTINE, KG ;
OPELLA, SJ .
BIOCHEMISTRY, 1987, 26 (03) :847-854
[8]   DYNAMICS OF THE DIHYDROFOLATE-REDUCTASE FOLATE COMPLEX - CATALYTIC SITES AND REGIONS KNOWN TO UNDERGO CONFORMATIONAL CHANGE EXHIBIT DIVERSE DYNAMICAL FEATURES [J].
EPSTEIN, DM ;
BENKOVIC, SJ ;
WRIGHT, PE .
BIOCHEMISTRY, 1995, 34 (35) :11037-11048
[9]   A COMPARISON OF N-15 NMR RELAXATION MEASUREMENTS WITH A MOLECULAR-DYNAMICS SIMULATION - BACKBONE DYNAMICS OF THE GLUCOCORTICOID RECEPTOR DNA-BINDING DOMAIN [J].
ERIKSSON, MAL ;
BERGLUND, H ;
HARD, T ;
NILSSON, L .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :375-390
[10]   A test of the ''jigsaw puzzle'' model for protein folding by multiple methionine substitutions within the core of T4 lysozyme [J].
Gassner, NC ;
Baase, WA ;
Matthews, BW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12155-12158