Visions & reflections (minireview) - How plants recognize pathogens and defend themselves

被引:146
作者
de Wit, P. J. G. M. [1 ]
机构
[1] Univ Wageningen, Wageningen Ctr Biosyst Genom, Phytopathol Lab, Wageningen, Netherlands
关键词
MAMP; plant innate immunity; microbial effector; infection; local and systemic resistance; guard model;
D O I
10.1007/s00018-007-7284-7
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants have an innate immunity system to defend themselves against pathogens. With the primary immune system, plants recognize microbe-associated molecular patterns (MAMPs) of potential pathogens through pattern recognition receptors (PRRs) that mediate a basal defense response. Plant pathogens suppress this basal defense response by means of effectors that enable them to cause disease. With the secondary immune system, plants have gained the ability to recognize effector-induced perturbations of host targets through resistance proteins (RPs) that mediate a strong local defense response that stops pathogen growth. Both primary and secondary immune responses in plants depend on germ line-encoded PRRs and RPs. During induction of local immune responses, systemic immune responses also become activated, which predispose plants to become more resistant to subsequent pathogen attacks. This review gives an update on recent findings that have enhanced our understanding of plant innate immunity and the arms race between plants and their pathogens.
引用
收藏
页码:2726 / 2732
页数:7
相关论文
共 65 条
[1]   Bacterial elicitation and evasion of plant innate immunity [J].
Abramovitch, Robert B. ;
Anderson, Jeffrey C. ;
Martin, Gregory B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (08) :601-611
[2]  
Agrios G.N., 2005, Plant Pathology, V5th
[3]   Type III secretion system effector proteins: Double agents in bacterial disease and plant defense [J].
Alfano, JR ;
Collmer, A .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2004, 42 :385-414
[4]   Evolution of microbial virulence: the benefits of stress [J].
Arnold, Dawn L. ;
Jackson, Robert W. ;
Waterfield, Nick R. ;
Mansfield, John W. .
TRENDS IN GENETICS, 2007, 23 (06) :293-300
[5]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[6]   Are innate immune signaling pathways in plants and animals conserved? [J].
Ausubel, FM .
NATURE IMMUNOLOGY, 2005, 6 (10) :973-979
[7]   Genetic and molecular evidence that the Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease [J].
Axtell, MJ ;
Chisholm, ST ;
Dahlbeck, D ;
Staskawicz, BJ .
MOLECULAR MICROBIOLOGY, 2003, 49 (06) :1537-1546
[8]   Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4 [J].
Axtell, MJ ;
Staskawicz, BJ .
CELL, 2003, 112 (03) :369-377
[9]  
Bhattacharjee Souvik, 2006, PLoS Pathogens, V2, DOI 10.1371/journal.ppat.0020050
[10]   Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4 [J].
Brodersen, Peter ;
Petersen, Morten ;
Nielsen, Henrik Bjorn ;
Zhu, Shijiang ;
Newman, Mari-Anne ;
Shokat, Kevan M. ;
Rietz, Steffen ;
Parker, Jane ;
Mundy, John .
PLANT JOURNAL, 2006, 47 (04) :532-546