Unifying variational methods for simulating quantum many-body systems

被引:40
作者
Dawson, C. M. [1 ]
Eisert, J. [1 ,2 ]
Osborne, T. J. [3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
[2] Univ Potsdam, Dept Phys, D-14469 Potsdam, Germany
[3] Univ London Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
关键词
D O I
10.1103/PhysRevLett.100.130501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a unified formulation of variational methods for simulating ground state properties of quantum many-body systems. The key feature is a novel variational method over quantum circuits via infinitesimal unitary transformations, inspired by flow equation methods. Variational classes are represented as efficiently contractible unitary networks, including the matrix-product states of density matrix renormalization, multiscale entanglement renormalization (MERA) states, weighted graph states, and quantum cellular automata. In particular, this provides a tool for varying over classes of states, such as MERA, for which so far no efficient way of variation has been known. The scheme is flexible when it comes to hybridizing methods or formulating new ones. We demonstrate the functioning by numerical implementations of MERA, matrix-product states, and a new variational set on benchmarks.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Ground-state approximation for strongly interacting spin systems in arbitrary spatial dimension [J].
Anders, S. ;
Plenio, M. B. ;
Duer, W. ;
Verstraete, F. ;
Briegel, H. -J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (10)
[2]  
[Anonymous], ARXIVCONDMAT0605194
[3]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[4]   Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices [J].
Cramer, M. ;
Eisert, J. .
NEW JOURNAL OF PHYSICS, 2006, 8
[5]   Computational difficulty of global variations in the density matrix renormalization group [J].
Eisert, J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (26)
[6]   ABUNDANCE OF TRANSLATION INVARIANT PURE STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (03) :249-258
[7]   RENORMALIZATION OF HAMILTONIANS [J].
GLAZEK, SD ;
WILSON, KG .
PHYSICAL REVIEW D, 1993, 48 (12) :5863-5872
[8]   An area law for one-dimensional quantum systems [J].
Hastings, M. B. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[9]   Quantum spin chain, Toeplitz determinants and the Fisher-Hartwig conjecture [J].
Jin, BQ ;
Korepin, VE .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :79-95
[10]   Flow equation solution for the weak- to strong-coupling crossover in the sine-Gordon model [J].
Kehrein, S .
PHYSICAL REVIEW LETTERS, 1999, 83 (24) :4914-4917