RNA triphosphatase component of the mRNA capping apparatus of Paramecium bursaria Chlorella virus 1

被引:27
作者
Ho, CK [1 ]
Gong, CL [1 ]
Shuman, S [1 ]
机构
[1] Sloan Kettering Inst, Program Mol Biol, New York, NY 10021 USA
关键词
D O I
10.1128/JVI.75.4.1744-1750.2001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Paramecium barsaria chlorella virus 1 (PBCV-1) elicits a lytic infection of its unicellular green alga host. The 330-kbp viral genome has been sequenced, yet little is known about how viral mRNAs are synthesized and processed. PBCV-1 encodes its own mRNA guanylyltransferase, which catalyzes the addition of GMP to the 5' diphosphate end of RNA to form a GpppN cap structure. Here we report that PBCV-1 encodes a separate RNA triphosphatase (RTP) that catalyzes the initial step in cap synthesis: hydrolysis of the gamma -phosphate of triphosphate-terminated RNA to generate an RNA diphosphate end, We exploit a yeast-based genetic system to show that Chlorella virus RTP can function as a cap-forming enzyme in vivo. The 193-amino-acid Chlorella virus RTP is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and other large eukaryotic DNA viruses (poxviruses, African swine fever virus, and baculoviruses). Chlorella virus RTP is more similar in structure to the yeast RNA triphosphatases than to the enzymes of metazoan DNA viruses. Indeed, PBCV-1 is unique among DNA viruses in that the triphosphatase and guanylyltransferase steps of cap formation are catalyzed by separate viral enzymes instead of a single viral polypeptide with multiple catalytic domains.
引用
收藏
页码:1744 / 1750
页数:7
相关论文
共 32 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Allosteric interactions between capping enzyme subunits and the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Rodriguez, CR ;
Takagi, T ;
Buratowski, S .
GENES & DEVELOPMENT, 1998, 12 (22) :3482-3487
[3]   mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain [J].
Cho, EJ ;
Takagi, T ;
Moore, CR ;
Buratowski, S .
GENES & DEVELOPMENT, 1997, 11 (24) :3319-3326
[4]   RNA 5′-triphosphatase, nucleoside triphosphatase, and guanylyltransferase activities of baculovirus LEF-4 protein [J].
Gross, CH ;
Shuman, S .
JOURNAL OF VIROLOGY, 1998, 72 (12) :10020-10028
[5]   Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase [J].
Guarino, LA ;
Jin, JP ;
Dong, W .
JOURNAL OF VIROLOGY, 1998, 72 (12) :10003-10010
[6]   X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes [J].
Hakansson, K ;
Doherty, AJ ;
Shuman, S ;
Wigley, DB .
CELL, 1997, 89 (04) :545-553
[7]   Yeast and viral RNA 5′ triphosphatases comprise a new nucleoside triphosphatase family [J].
Ho, CK ;
Pei, Y ;
Shuman, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (51) :34151-34156
[8]   Expression and characterization of an RNA capping enzyme encoded by Chlorella virus PBCV-1 [J].
Ho, CK ;
VanEtten, JL ;
Shuman, S .
JOURNAL OF VIROLOGY, 1996, 70 (10) :6658-6664
[9]   An essential surface motif (WAQKW) of yeast RNA triphosphatase mediates formation of the mRNA capping enzyme complex with RNA guanylyltransferase [J].
Ho, CK ;
Lehman, K ;
Shuman, S .
NUCLEIC ACIDS RESEARCH, 1999, 27 (24) :4671-4678
[10]   The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II [J].
Ho, CK ;
Sriskanda, V ;
McCracken, S ;
Bentley, D ;
Schwer, B ;
Shuman, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (16) :9577-9585