A classical analogy of entanglement

被引:273
作者
Spreeuw, RJC [1 ]
机构
[1] Univ Amsterdam, Waals Zeeman Inst, NL-1018 XE Amsterdam, Netherlands
关键词
D O I
10.1023/A:1018703709245
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A classical analogy of quantum mechanical entanglement is presented, using classical light beams. The analogy can be pushed a long way, only to reach its limits when we try to represent multiparticle, or nonlocal, entanglement. This demonstrates that the latter is of exclusive quantum nature. Oil the other hand, the entanglement of different degrees of freedom of the same particle might be considered classical. The classical analog cannot replace Einstein-Podolsky-Rosen type experiments, nor can ii be used to build a quantum computer.. Nevertheless, ii does provide a reliable guide to the intuition and a tool for visualizing abstract concepts in low-dimensional Hilbert spaces.
引用
收藏
页码:361 / 374
页数:14
相关论文
共 18 条
[1]   EXPERIMENTAL REALIZATION OF EINSTEIN-PODOLSKY-ROSEN-BOHM GEDANKENEXPERIMENT - A NEW VIOLATION OF BELL INEQUALITIES [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :91-94
[2]  
Bell JS, 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[3]   QUANTUM INFORMATION AND COMPUTATION [J].
BENNETT, CH .
PHYSICS TODAY, 1995, 48 (10) :24-30
[4]   Observing the progressive decoherence of the ''meter'' in a quantum measurement [J].
Brune, M ;
Hagley, E ;
Dreyer, J ;
Maitre, X ;
Maali, A ;
Wunderlich, C ;
Raimond, JM ;
Haroche, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (24) :4887-4890
[5]   QUANTUM-THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER [J].
DEUTSCH, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 400 (1818) :97-117
[6]   SIMPLE CAVITY-QED 2-BIT UNIVERSAL QUANTUM LOGIC GATE - THE PRINCIPLE AND EXPECTED PERFORMANCES [J].
DOMOKOS, P ;
RAIMOND, JM ;
BRUNE, M ;
HAROCHE, S .
PHYSICAL REVIEW A, 1995, 52 (05) :3554-3559
[7]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[8]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[9]  
GREENBERGER DM, 1996, QUANTUM INTERFEROMET, V2
[10]   A new calculus for the treatment of optical systems I. Description and discussion of the calculus [J].
Jones, RC .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1941, 31 (07) :488-493