Anomalous heat conduction and anomalous diffusion in one-dimensional systems

被引:248
作者
Li, BW [1 ]
Wang, J
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Temasek Labs, Singapore 119260, Singapore
关键词
D O I
10.1103/PhysRevLett.91.044301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a connection between anomalous heat conduction and anomalous diffusion in one-dimensional systems. It is shown that if the mean square of the displacement of the particle is <Deltax(2)>=2Dt(alpha)(0<alphaless than or equal to2), then the thermal conductivity can be expressed in terms of the system size L as kappa=cL(beta) with beta=2-2/alpha. This result predicts that normal diffusion (alpha=1) implies normal heat conduction obeying the Fourier law (beta=0) and that superdiffusion (alpha>1) implies anomalous heat conduction with a divergent thermal conductivity (beta>0). More interestingly, subdiffusion (alpha<1) implies anomalous heat conduction with a convergent thermal conductivity (beta<0), and, consequently, the system is a thermal insulator in the thermodynamic limit. Existing numerical data support our results.
引用
收藏
页码:1 / 044301
页数:4
相关论文
共 52 条
[1]   Heat conductivity and dynamical instability [J].
Alonso, D ;
Artuso, R ;
Casati, G ;
Guarneri, I .
PHYSICAL REVIEW LETTERS, 1999, 82 (09) :1859-1862
[2]   Polygonal billiards and transport: Diffusion and heat conduction [J].
Alonso, D ;
Ruiz, A ;
de Vega, I .
PHYSICAL REVIEW E, 2002, 66 (06) :15-066131
[3]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[4]  
ANG JKY, 2003, THESIS NATL U SINGAP
[5]   Fermi-Pasta-Ulam β model:: Boundary jumps, Fourier's law, and scaling [J].
Aoki, K ;
Kusnezov, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (18) :4029-4032
[6]   Bulk properties of anharmonic chains in strong thermal gradients:: non-equilibrium φ4 theory [J].
Aoki, K ;
Kusnezov, D .
PHYSICS LETTERS A, 2000, 265 (04) :250-256
[7]   Subdiffusion and anomalous local viscoelasticity in actin networks - Comment [J].
Barkai, E ;
Klafter, J .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1134-1134
[8]  
Bonetto F., 2000, MATH PHYS, V2000, P128, DOI DOI 10.1142/9781848160224_0008
[9]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[10]   ONE-DIMENSIONAL CLASSICAL MANY-BODY SYSTEM HAVING A NORMAL THERMAL-CONDUCTIVITY [J].
CASATI, G ;
FORD, J ;
VIVALDI, F ;
VISSCHER, WM .
PHYSICAL REVIEW LETTERS, 1984, 52 (21) :1861-1864