Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis

被引:226
作者
Yang, F [1 ]
Tuxhorn, JA [1 ]
Ressler, SJ [1 ]
McAlhany, SJ [1 ]
Dang, TD [1 ]
Rowley, DR [1 ]
机构
[1] Baylor Coll Med, Dept Mol & Cellular Biol, Houston, TX 77030 USA
关键词
D O I
10.1158/0008-5472.CAN-05-1702
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Our previous studies have defined reactive stroma in human prostate cancer and have developed the differential reactive stroma. (DRS) xenograft model to evaluate mechanisms of how reactive stroma promotes carcinoma tumorigenesis. Analysis of several normal human prostate stromal cell lines in the DRS model showed that some rapidly promoted LNCaP prostate carcinoma cell tumorigenesis and others had no effect. These differential effects were due, in part, to elevated angiogenesis and were transforming growth factor (TGF)-beta 1 mediated. The present study was conducted to identify and evaluate candidate genes expressed in prostate stromal cells responsible for this differential tumor-promoting activity. Differential cDNA microarray analyses showed that connective tissue growth factor (CTGF) was expressed at low levels in nontumor-promoting prostate stromal. cells and was constitutively expressed in tumor-promoting prostate stromal cells. TGF-beta 1 stimulated CTGF message expression in nontumor-promoting prostate stromal cells. To evaluate the role of stromal-expressed CTGF in tumor progression, either engineered mouse prostate stromal fibroblasts expressing retroviral-introduced CTGF or 3T3 fibroblasts engineered with mifepristone-regulated CTGF were combined with LNCaP human prostate cancer cells in the DRS xenograft tumor model under different extracellular matrix conditions. Expression of CTGF in tumor-reactive stroma induced significant increases in microvessel density and xenograft tumor growth under several conditions tested. These data suggest that CTGF is a downstream mediator of TGF-beta 1 action in cancer-associated reactive stroma and is likely to be one of the key regulators of angiogenesis in the tumor-reactive stromal microenvironment.
引用
收藏
页码:8887 / 8895
页数:9
相关论文
共 50 条
[1]   Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β [J].
Abreu, JG ;
Ketpura, NI ;
Reversade, B ;
De Robertis, EM .
NATURE CELL BIOLOGY, 2002, 4 (08) :599-604
[2]  
Babic AM, 1999, MOL CELL BIOL, V19, P2958
[3]   CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth [J].
Babic, AM ;
Kireeva, ML ;
Kolesnikova, TV ;
Lau, LF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (11) :6355-6360
[4]   Gene regulation of connective tissue growth factor: new targets for antifibrotic therapy [J].
Blom, IE ;
Goldschmeding, R ;
Leask, A .
MATRIX BIOLOGY, 2002, 21 (06) :473-482
[5]   Connective tissue growth factor (IGFBP-rP2) expression and regulation in cultured bovine endothelial cells [J].
Boes, M ;
Dake, BL ;
Booth, BA ;
Erondu, NE ;
Oh, Y ;
Hwa, V ;
Rosenfeld, R ;
Bar, RS .
ENDOCRINOLOGY, 1999, 140 (04) :1575-1580
[6]   CONNECTIVE-TISSUE GROWTH-FACTOR - A CYSTEINE-RICH MITOGEN SECRETED BY HUMAN VASCULAR ENDOTHELIAL-CELLS IS RELATED TO THE SRC-INDUCED IMMEDIATE EARLY GENE-PRODUCT CEF-10 [J].
BRADHAM, DM ;
IGARASHI, A ;
POTTER, RL ;
GROTENDORST, GR .
JOURNAL OF CELL BIOLOGY, 1991, 114 (06) :1285-1294
[7]   Regulation of angiogenesis and endothelial cell function by connective tissue growth factor (CTGF) and cysteine-rich 61 (CYR61) [J].
Brigstock D.R. .
Angiogenesis, 2002, 5 (3) :153-165
[8]   The connective tissue growth factor cysteine-rich 61 nephroblastoma overexpressed (CCN) family [J].
Brigstock, DR .
ENDOCRINE REVIEWS, 1999, 20 (02) :189-206
[9]   The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts [J].
Chen, CC ;
Chen, NY ;
Lau, LF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (13) :10443-10452
[10]   CTGF expression is induced by TGF-β in cardiac fibroblasts and cardiac myocytes:: a potential role in heart fibrosis [J].
Chen, MM ;
Lam, A ;
Abraham, JA ;
Schreiner, GF ;
Joly, AH .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2000, 32 (10) :1805-1819