Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing

被引:147
作者
Kang, Junmo [1 ,2 ]
Hwang, Soonhwi [1 ,2 ]
Kim, Jae Hwan [3 ]
Kim, Min Hyeok [1 ,2 ]
Ryu, Jaechul [1 ,2 ]
Seo, Sang Jae [1 ,2 ]
Hong, Byung Hee [1 ,2 ,4 ]
Kim, Moon Ki [1 ,2 ,3 ]
Choi, Jae-Boong [1 ,2 ,3 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Ctr Human Interface Nano Technol HINT, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Sch Mech Engn, Suwon 440746, South Korea
[4] Seoul Natl Univ, Dept Chem, Seoul 151747, South Korea
基金
新加坡国家研究基金会;
关键词
graphene; dry transfer; hot pressing; arbitrary substrate; chemical vapor deposition; multiscale analysis; CHEMICAL-VAPOR-DEPOSITION; TRANSPARENT; SHEETS; PHASE;
D O I
10.1021/nn301207d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene films grown on metal substrates by chemical vapor deposition (CVD) method have to be safely transferred onto desired substrates for further applications. Recently, a roll-to-roll (R2R) method has been developed for large-area transfer, which is particularly efficient for flexible target substrates. However, in the case of rigid substrates such as glass or wafers, the roll-based method is found to induce considerable mechanical damages on graphene films during the transfer process, resulting in the degradation of electrical property. Here we introduce an improved dry transfer technique based on a hot-pressing method that can minimize damage on graphene by neutralizing mechanical stress. Thus, we enhanced the transfer efficiency of the large-area graphene films on a substrate with arbitrary thickness and rigidity, evidenced by scanning electron microscope (SEM) and atomic force microscope (AFM) images, Raman spectra, and various electrical characterizations. We also performed a theoretical multiscale simulation from continuum to atomic level to compare the mechanical stresses caused by the R2R and the hot-pressing methods, which also supports our conclusion. Consequently, we believe that the proposed hot-pressing method will be immediately useful for display and solar cell applications that currently require rigid and large substrates.
引用
收藏
页码:5360 / 5365
页数:6
相关论文
共 45 条
[1]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Facile one-step transfer process of graphene [J].
Bajpai, Reeti ;
Roy, Soumyendu ;
Jain, Lokendra ;
Kulshrestha, Neha ;
Hazra, Kiran S. ;
Misra, D. S. .
NANOTECHNOLOGY, 2011, 22 (22)
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[6]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[7]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[8]   Technique for the Dry Transfer of Epitaxial Graphene onto Arbitrary Substrates [J].
Caldwell, Joshua D. ;
Anderson, Travis J. ;
Culbertson, James C. ;
Jernigan, Glenn G. ;
Hobart, Karl D. ;
Kub, Fritz J. ;
Tadjer, Marko J. ;
Tedesco, Joseph L. ;
Hite, Jennifer K. ;
Mastro, Michael A. ;
Myers-Ward, Rachael L. ;
Eddy, Charles R., Jr. ;
Campbell, Paul M. ;
Gaskill, D. Kurt .
ACS NANO, 2010, 4 (02) :1108-1114
[9]   Stress-strain behaviour of poly(ethylene terephthalate) (PET) during large plastic deformation by plane strain compression: The relation between stress-strain curve and thermal history, temperature and strain rate [J].
Denardin, ELG ;
Tokumoto, S ;
Samios, D .
RHEOLOGICA ACTA, 2005, 45 (02) :142-150
[10]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274