Nicotine adenine dinucleotide (NAD(+)) performs key roles in electron transport reactions, as a substrate for poly (ADP-ribose) polymerase and NAD(+)-dependent protein deacetylases. In the latter two processes, NAD(+) is consumed and converted to ADP-ribose and nicotinamide. NAD(+) levels can be maintained by regeneration of NAD(+) from nicotinamide via a salvage pathway or by de novo synthesis of NAD(+) from tryptophan. Both pathways are conserved from yeast to humans. We describe a critical role of the NAD(+)-dependent deacetylase Hst1p as a sensor of NAD(+) levels and regulator of NAD(+) biosynthesis. Using transcript arrays, we show that low NAD+ states specifically induce the de novo NAD(+) biosynthesis genes while the genes in the salvage pathway remain unaffected. The NAD(+)-dependent deacetylase activity of Hst1p represses de novo NAD(+) biosynthesis genes in the absence of new protein synthesis, suggesting a direct effect. The known Hst1p binding partner, Sum1p, is present at promoters of highly inducible NAD(+) biosynthesis genes. The removal of HST1-mediated repression of the NAD(+) de novo biosynthesis pathway leads to increased cellular NAD(+) levels. Transcript array analysis shows that reduction in cellular NAD(+) levels preferentially affects Hst1p-regulated genes in comparison to genes regulated with other NAD(+)-dependent deacetylases (Sir2p, Hst2p, Hst3p, and Hst4p). In vitro experiments demonstrate that Hst1p has relatively low affinity toward NAD(+) in comparison to other NAD(+)-dependent enzymes. These findings suggest that Hst1p serves as a cellular NAD(+) sensor that monitors and regulates cellular NAD(+) levels.