Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight

被引:410
作者
Jako, C [1 ]
Kumar, A [1 ]
Wei, YD [1 ]
Zou, JT [1 ]
Barton, DL [1 ]
Giblin, EM [1 ]
Covello, PS [1 ]
Taylor, DC [1 ]
机构
[1] Natl Res Council Canada, Inst Plant Biotechnol, Seed Oil Biotechnol Grp, Saskatoon, SK S7N 0W9, Canada
关键词
D O I
10.1104/pp.126.2.861
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
We recently reported the cloning and characterization of an Arabidopsis (ecotype Columbia) diacylglycerol acyltransferase cDNA (Zou et al., 1999) and found that in Arabidopsis mutant line AS11, an ethyl methanesulfonate-induced mutation at a locus on chromosome II designated as Tag1 consists of a 147-bp insertion in the DNA, which results in a repeat of the 81-bp exon 2 in the Tag1 cDNA. This insertion mutation is correlated with an altered seed fatty acid composition, reduced diacylglycerol acyltransferase (DGAT; EC 2.3.1.20) activity, reduced seed triacylglycerol content, and delayed seed development in the AS11 mutant. The effect of the insertion mutation on microsomal acyl-coenzyme A-dependent DGAT is examined with respect to DGAT activity and its substrate specificity in the AS11 mutant relative to wild type. We demonstrate that transformation of mutant AS11 with a single copy of the wild-type Tag1 DGAT cDNA can complement the fatty acid and reduced oil phenotype of mutant AS11. More importantly, we show for the first time that seed-specific over-expression of the DGAT cDNA in wild-type Arabidopsis enhances oil deposition and average seed weight, which are correlated with DGAT transcript levels. The DGAT activity in developing seed of transgenic lines was enhanced by 10% to 70%. Thus, the current study confirms the important role of DGAT in regulating the quantity of seed triacylglycerols and the sink size in developing seeds.
引用
收藏
页码:861 / 874
页数:14
相关论文
共 65 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   FAT METABOLISM IN HIGHER PLANTS .19. BIOSYNTHESIS OF TRIGLYCERIDES BY AVOCADO-MESOCARP ENZYMES [J].
BARRON, EJ ;
STUMPF, PK .
BIOCHIMICA ET BIOPHYSICA ACTA, 1962, 60 (02) :329-&
[3]   UTILIZATION OF ERUCOYL-COA BY ACYLTRANSFERASES FROM DEVELOPING SEEDS OF BRASSICA-NAPUS (L) INVOLVED IN TRIACYLGLYCEROL BIOSYNTHESIS [J].
BERNERTH, R ;
FRENTZEN, M .
PLANT SCIENCE, 1990, 67 (01) :21-28
[4]   BINARY AGROBACTERIUM VECTORS FOR PLANT TRANSFORMATION [J].
BEVAN, M .
NUCLEIC ACIDS RESEARCH, 1984, 12 (22) :8711-8721
[5]   Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase [J].
Bouvier-Navé, P ;
Benveniste, P ;
Oelkers, P ;
Sturley, SL ;
Schaller, H .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2000, 267 (01) :85-96
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   ACYL COENZYME-A PREFERENCE OF DIACYLGLYCEROL ACYLTRANSFERASE FROM THE MATURING SEEDS OF CUPHEA, MAIZE, RAPESEED, AND CANOLA [J].
CAO, YZ ;
HUANG, AHC .
PLANT PHYSIOLOGY, 1987, 84 (03) :762-765
[8]   DIACYLGLYCEROL ACYLTRANSFERASE IN MATURING OIL SEEDS OF MAIZE AND OTHER SPECIES [J].
CAO, YZ ;
HUANG, AHC .
PLANT PHYSIOLOGY, 1986, 82 (03) :813-820
[9]   Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis [J].
Cases, S ;
Smith, SJ ;
Zheng, YW ;
Myers, HM ;
Lear, SR ;
Sande, E ;
Novak, S ;
Collins, C ;
Welch, CB ;
Lusis, AJ ;
Erickson, SK ;
Farese, RV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) :13018-13023
[10]   GENOMIC SEQUENCING [J].
CHURCH, GM ;
GILBERT, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (07) :1991-1995