Approximation of nonlinear systems with radial basis function neural networks

被引:193
作者
Schilling, RJ [1 ]
Carroll, JJ
Al-Ajlouni, AF
机构
[1] Clarkson Univ, Dept Elect & Comp Engn, Potsdam, NY 13699 USA
[2] Yarmouk Univ, Hijjawi Fac Engn Technol, Dept Commun Engn, Irbid, Jordan
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 2001年 / 12卷 / 01期
关键词
function approximation; neural network; nonlinear system; radial basis function (RBF);
D O I
10.1109/72.896792
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A technique for approximating a continuous function of n. variables with a radial basis function (RBF) neural network is presented. The method uses an n-dimensional raised-cosine type of that RBF is smooth, yet has compact support. The RBF network coefficients are low-order polynomial functions of the input. A simple computational procedure is presented which significantly reduces the network training and evaluation time. Storage space is also reduced by allowing for a nonuniform grid of points about which the RBFs are centered. The network output is shown to be continuous and have a continuous first derivative. When the network is used to approximate a nonlinear dynamic system, the resulting system is bounded-input bounded-output stable. For the special case of a linear system, the RBF network representation is exact on the domain over which it is defined, and it is optimal in terms of the number of distinct storage parameters required. Several examples are presented which illustrate the effectiveness of this technique.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 31 条
[1]  
[Anonymous], IEEE T NEURAL NETWOR
[2]   APPROXIMATION-THEORY AND FEEDFORWARD NETWORKS [J].
BLUM, EK ;
LI, LK .
NEURAL NETWORKS, 1991, 4 (04) :511-515
[3]   ORTHOGONAL LEAST-SQUARES LEARNING ALGORITHM FOR RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
COWAN, CFN ;
GRANT, PM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1991, 2 (02) :302-309
[4]  
CHEN S, 1992, INT J CONTROL, V56, P319, DOI [10.1080/00207179208934317, 10.1080/00207179008934126]
[5]   APPROXIMATIONS OF CONTINUOUS FUNCTIONALS BY NEURAL NETWORKS WITH APPLICATION TO DYNAMIC-SYSTEMS [J].
CHEN, TP ;
CHEN, H .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1993, 4 (06) :910-918
[6]   UNIVERSAL APPROXIMATION TO NONLINEAR OPERATORS BY NEURAL NETWORKS WITH ARBITRARY ACTIVATION FUNCTIONS AND ITS APPLICATION TO DYNAMICAL-SYSTEMS [J].
CHEN, TP ;
CHEN, H .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (04) :911-917
[7]   Comparison of adaptive methods for function estimation from samples [J].
Cherkassky, V ;
Gehring, D .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (04) :969-984
[8]   APPROXIMATION BY RIDGE FUNCTIONS AND NEURAL NETWORKS WITH ONE HIDDEN LAYER [J].
CHUI, CK ;
LI, X .
JOURNAL OF APPROXIMATION THEORY, 1992, 70 (02) :131-141
[9]  
Cook P.A., 1986, Nonlinear Dynamic Systems
[10]   APPROXIMATION OF DYNAMICAL-SYSTEMS BY CONTINUOUS-TIME RECURRENT NEURAL NETWORKS [J].
FUNAHASHI, K ;
NAKAMURA, Y .
NEURAL NETWORKS, 1993, 6 (06) :801-806