Upgrading membranes to shells -: The CEG rotation free shell element and its application in structural analysis

被引:26
作者
Linhard, Johannes [1 ]
Wuechner, Roland [1 ]
Bletzinger, Kai-Uwe [1 ]
机构
[1] Tech Univ Munich, Lehrstuhl Stat, D-80333 Munich, Germany
关键词
rotation free shell element; Kirchhoff-Love; large displacements; geometrically nonlinear; triangle; quadrilateral;
D O I
10.1016/j.finel.2007.09.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A multi-purpose general rotation free element for the analysis of thin Kirchhoff-Love type shells is presented: Isoparametric displacement elements are used as basic geometrical description and to determine the membrane strains. Calculation of curvature to determine bending strains is based on discrete nodal directors, which are assigned to each node and determined by the geometry of the surrounding elements. The kinematic is formulated completely nonlinear. The technology is modular allowing for adding bending stiffness to an initial membrane model using the same geometrical discretization and, thus, supporting the entire design procedure from form finding to ultimate load or dynamic analysis of thin shells. Different examples ranging from static wrinkling analysis of a membrane to nonlinear dynamic analysis of a thin metal shelter show the multitude of possible applications.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 17 条
[1]  
ANKER JC, 2004, P 22 CAD FEM US M 20
[2]  
[Anonymous], 1985, GRUNDLAGEN INGENIEUR, DOI DOI 10.1007/978-3-322-93983-8
[3]  
Bischoff M, 2004, ENCY COMPUTATIONAL M
[4]   Fundamental considerations for the finite element analysis of shell structures [J].
Chapelle, D ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 1998, 66 (01) :19-36
[5]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[6]   Fully C1-conforming subdivision elements for finite deformation thin-shell analysis [J].
Cirak, F ;
Ortiz, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2001, 51 (07) :813-833
[7]  
Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
[8]  
Green A. E., 1992, Theoretical Elasticity
[9]  
Holzapfel G. A., 2004, NONLINEAR SOLID MECH
[10]  
Iguchi S., 1937, Ing.-Arch, V8, P11, DOI [10.1007/BF02086517, DOI 10.1007/BF02086517]