The role of interfaces in enhancing the yield strength of composites and polycrystals

被引:167
作者
Aifantis, KE [1 ]
Willis, JR [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, Dept Appl Math & Theoret Phys, Cambridge CB3 0AL, England
基金
美国国家科学基金会;
关键词
strain-gradient plasticity; variational principles; Hall-Petch effect;
D O I
10.1016/j.jmps.2004.12.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A deformation-theory version of strain-gradient plasticity is employed to assess the influence of microstructural scale on the yield strength of composites and polycrystals. The framework is that recently employed by Fleck and Willis (J. Mech. Phys. Solids 52 (2004) 1855-1888), but it is enhanced by the introduction of an interfacial "energy" that penalises the build-up of plastic strain at interfaces. The most notable features of the new interfacial potential are: (a) internal surfaces are treated as surfaces of discontinuity and (b) the scale-dependent enhancement of the overall yield strength is no longer limited by the "Taylor" or "Voigt" upper bound. The variational structure associated with the theory is developed in generality and its implications are demonstrated through consideration of simple one-dimensional examples. Results are presented for a single-phase medium containing interfaces distributed either periodically or randomly. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1047 / 1070
页数:24
相关论文
共 27 条
[1]   THE PHYSICS OF PLASTIC-DEFORMATION [J].
AIFANTIS, EC .
INTERNATIONAL JOURNAL OF PLASTICITY, 1987, 3 (03) :211-247
[2]   ON THE MICROSTRUCTURAL ORIGIN OF CERTAIN INELASTIC MODELS [J].
AIFANTIS, EC .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1984, 106 (04) :326-330
[3]  
AIFANTIS KE, 2005, IN PRESS INT J PLAST
[4]   A comparison of nonlocal continuum and discrete dislocation plasticity predictions [J].
Bittencourt, E ;
Needleman, A ;
Gurtin, ME ;
Van der Giessen, E .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2003, 51 (02) :281-310
[5]   THE EFFECTIVE MECHANICAL-PROPERTIES OF NONLINEAR ISOTROPIC COMPOSITES [J].
CASTANEDA, PP .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1991, 39 (01) :45-71
[6]   Comparison of discrete dislocation and continuum plasticity predictions for a composite material [J].
Cleveringa, HHM ;
VanderGiessen, E ;
Needleman, A .
ACTA MATERIALIA, 1997, 45 (08) :3163-3179
[7]   Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite [J].
Fleck, NA ;
Willis, JR .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (08) :1855-1888
[8]   STRAIN GRADIENT PLASTICITY - THEORY AND EXPERIMENT [J].
FLECK, NA ;
MULLER, GM ;
ASHBY, MF ;
HUTCHINSON, JW .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :475-487
[9]   A reformulation of strain gradient plasticity [J].
Fleck, NA ;
Hutchinson, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (10) :2245-2271
[10]   A PHENOMENOLOGICAL THEORY FOR STRAIN GRADIENT EFFECTS IN PLASTICITY [J].
FLECK, NA ;
HUTCHINSON, JW .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1993, 41 (12) :1825-1857