Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers

被引:1005
作者
Champion, Julie A. [1 ]
Katare, Yogesh K. [1 ]
Mitragotri, Samir [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
关键词
nanoparticle; nanotechnology; morphology; drug delivery; biomaterials;
D O I
10.1016/j.jconrel.2007.03.022
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Encapsulation of therapeutic agents in polymer particles has been successfully used in the development of new drug carriers. A number of design parameters that govern the functional behavior of carriers, including the choice of polymer, particle size and surface chemistry, have been tuned to optimize their performance in vivo. However, particle shape, which may also have a strong impact on carrier performance, has not been thoroughly investigated. This is perhaps due to the limited availability of techniques to produce non-spherical polymer particles. In recent years, a number of reports have emerged to directly address this bottleneck and initial studies have indeed confirmed that particle shape can significantly impact the performance of polymer drug carriers. This article provides a review of this field with respect to methods of particle preparation and the role of particle shape in drug delivery. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 40 条
[1]  
Beningo KA, 2002, J CELL SCI, V115, P849
[2]   Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions [J].
Berkland, C ;
Kim, KK ;
Pack, DW .
JOURNAL OF CONTROLLED RELEASE, 2001, 73 (01) :59-74
[3]   Role of target geometry in phagocytosis [J].
Champion, JA ;
Mitragotri, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (13) :4930-4934
[4]   Targeted worm micelles [J].
Dalhaimer, P ;
Engler, AJ ;
Parthasarathy, R ;
Discher, DE .
BIOMACROMOLECULES, 2004, 5 (05) :1714-1719
[5]   Controlled synthesis of nonspherical microparticles using microfluidics [J].
Dendukuri, D ;
Tsoi, K ;
Hatton, TA ;
Doyle, PS .
LANGMUIR, 2005, 21 (06) :2113-2116
[6]   Continuous-flow lithography for high-throughput microparticle synthesis [J].
Dendukuri, D ;
Pregibon, DC ;
Collins, J ;
Hatton, TA ;
Doyle, PS .
NATURE MATERIALS, 2006, 5 (05) :365-369
[7]   Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles [J].
Dunne, M ;
Corrigan, OI ;
Ramtoola, Z .
BIOMATERIALS, 2000, 21 (16) :1659-1668
[8]   Large porous particles for pulmonary drug delivery [J].
Edwards, DA ;
Hanes, J ;
Caponetti, G ;
Hrkach, J ;
BenJebria, A ;
Eskew, ML ;
Mintzes, J ;
Deaver, D ;
Lotan, N ;
Langer, R .
SCIENCE, 1997, 276 (5320) :1868-1871
[9]  
GOLDSMITH HL, 1986, THROMB HAEMOSTASIS, V55, P415
[10]   Functional cooperation between the microtubule and actin cytoskeletons [J].
Goode, BL ;
Drubin, DG ;
Barnes, G .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (01) :63-71