Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation

被引:43
作者
Clarke, AK [1 ]
Schelin, J [1 ]
Porankiewicz, J [1 ]
机构
[1] Umea Univ, Dept Plant Physiol, S-90187 Umea, Sweden
关键词
ClpP1; cyanobacteria; D1; protein; heat shock; high light;
D O I
10.1023/A:1006016302074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
ClpP functions as the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. We have cloned a clpP gene, designated clpP1, from the cyanobacterium Synechococcus sp. PCC 7942. The monocistronic 591 bp gene codes for a protein 80% similar to one of four putative ClpP proteins in another cyanobacterium, Synechocystis sp. PCC 6803. The constitutive ClpP1 content in Synechococcus cultures was not inducible by high temperatures, but it did rise fivefold with increasing growth light from 50 to 175 mu mol photons m(-2) s(-1). A clpP1 inactivation strain (Delta clpP1) exhibited slower growth rates, especially at the higher irradiances, and changes in the proportion of the photosynthetic pigments, chlorophyll a and phycocyanin. Many mutant cells (ca. 35%) were also severely elongated, up to 20 times longer than the wild type. The stress phenotype of Delta clpP1 when grown at high light was confirmed by the induction of known stress proteins, such as the heat shock protein GroEL and the alternate form of PSII reaction center D1 protein, D1 form 2. ClpP1 content also rose significantly during short-term photoinhibition, but its loss in Delta clpP1 did not exacerbate the extent of inactivation of photosynthesis, nor affect the inducible D1 exchange mechanism, indicating ClpP1 is not directly involved in D1 protein turnover.
引用
收藏
页码:791 / 801
页数:11
相关论文
共 48 条
[31]  
MAURIZI MR, 1990, J BIOL CHEM, V265, P12536
[32]   CHARACTERIZATION OF A CDNA CLONE ENCODING A CHLOROPLAST-TARGETED CLP HOMOLOG [J].
MOORE, T ;
KEEGSTRA, K .
PLANT MOLECULAR BIOLOGY, 1993, 21 (03) :525-537
[33]   THE FUNCTION OF HEAT-SHOCK PROTEINS IN STRESS TOLERANCE - DEGRADATION AND REACTIVATION OF DAMAGED PROTEINS [J].
PARSELL, DA ;
LINDQUIST, S .
ANNUAL REVIEW OF GENETICS, 1993, 27 :437-496
[34]   ANALYSIS OF MULTISEPTATE POTENTIAL OF BACILLUS-SUBTILIS [J].
PAULTON, RJL .
JOURNAL OF BACTERIOLOGY, 1970, 104 (02) :762-&
[35]  
PLOEM JS, 1991, LIGHT MICROSCOPY BIO, P163
[36]   REGULATION OF CYANOBACTERIAL PIGMENT-PROTEIN COMPOSITION AND ORGANIZATION BY ENVIRONMENTAL-FACTORS [J].
RIETHMAN, H ;
BULLERJAHN, G ;
REDDY, KJ ;
SHERMAN, LA .
PHOTOSYNTHESIS RESEARCH, 1988, 18 (1-2) :133-161
[37]  
RIGGS P, 1990, CURRENT PROTOCOLS MO
[38]   GENERIC ASSIGNMENTS, STRAIN HISTORIES AND PROPERTIES OF PURE CULTURES OF CYANOBACTERIA [J].
RIPPKA, R ;
DERUELLES, J ;
WATERBURY, JB ;
HERDMAN, M ;
STANIER, RY .
JOURNAL OF GENERAL MICROBIOLOGY, 1979, 111 (MAR) :1-61
[39]   ON THE MOLECULAR MECHANISM OF LIGHT-INDUCED D1-PROTEIN DEGRADATION IN PHOTOSYSTEM-II CORE PARTICLES [J].
SALTER, AH ;
VIRGIN, I ;
HAGMAN, A ;
ANDERSSON, B .
BIOCHEMISTRY, 1992, 31 (16) :3990-3998
[40]   HSP100/Clp proteins: A common mechanism explains diverse functions [J].
Schirmer, EC ;
Glover, JR ;
Singer, MA ;
Lindquist, S .
TRENDS IN BIOCHEMICAL SCIENCES, 1996, 21 (08) :289-296