Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins

被引:82
作者
Stracker, TH
Lee, DV
Carson, CT
Araujo, FD
Ornelles, DA
Weitzman, MD
机构
[1] Salk Inst Biol Studies, Genet Lab, La Jolla, CA 92037 USA
[2] Univ Calif San Diego, Dept Biol, Grad Program, La Jolla, CA 92093 USA
[3] Wake Forest Univ, Sch Med, Dept Microbiol & Immunol, Winston Salem, NC 27157 USA
关键词
D O I
10.1128/JVI.79.11.6664-6673.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The early transcriptional region 4 (E4) of adenovirus type 5 (Ad5) encodes gene products that modulate splicing, apoptosis, transcription, DNA replication, and repair pathways. Viruses lacking both E4orf3 and E4orf6 have a severe replication defect, partially characterized by the formation of genome concatemers. Concatemer formation is dependent upon the cellular Nlre11 complex and is prevented by both the E4orf3 and E4orf6 proteins. The Mre11/Rad50/Nbs1 proteins are targeted for proteasome-mediated degradation by the Ad5 viral Elb55K/E4orf6 complex. The expression of Ad5 E4orf3 causes a redistribution of Mre11 complex members and results in their exclusion from viral replication centers. For this study, we further analyzed the interactions of E4 proteins from different adenovirus serotypes with the Mre11 complex. Analyses of infections with serotypes Ad4 and Ad12 demonstrated that the degradation of Mre11/Rad50/Nbs1 proteins is a conserved feature of the Elb55K/E4orf6 complex. Surprisingly, Nbs1 and Rad50 were localized to the replication centers of both Ad4 and Ad12 viruses prior to Mre11 complex degradation. The transfection of expression vectors for the E4orf3 proteins of Ad4l and Ad12 did not alter the localization of Mre11 complex members. The E4orf3 proteins of Ad4 and Ad12 also failed to complement defects in both concatemer formation and late protein production of a virus with a deletion of E4. These results reveal surprising differences among the highly conserved E4orf3 proteins from different serotypes in the ability to disrupt the Mre11 complex.
引用
收藏
页码:6664 / 6673
页数:10
相关论文
共 42 条
[1]   Regulation and localization of the Bloom syndrome protein in response to DNA damage [J].
Bischof, O ;
Kim, SH ;
Irving, J ;
Beresten, S ;
Ellis, NA ;
Campisi, J .
JOURNAL OF CELL BIOLOGY, 2001, 153 (02) :367-380
[2]   Pondering the promyelocytic leukemia protein (PML) puzzle: Possible functions for PML nuclear bodies [J].
Borden, KLB .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (15) :5259-5269
[3]   Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase [J].
Boyer, J ;
Rohleder, K ;
Ketner, G .
VIROLOGY, 1999, 263 (02) :307-312
[4]   INTERACTION OF ADENOVIRAL E4 AND E1B PRODUCTS IN LATE GENE-EXPRESSION [J].
BRIDGE, E ;
KETNER, G .
VIROLOGY, 1990, 174 (02) :345-353
[5]   REDUNDANT CONTROL OF ADENOVIRUS LATE GENE-EXPRESSION BY EARLY REGION-4 [J].
BRIDGE, E ;
KETNER, G .
JOURNAL OF VIROLOGY, 1989, 63 (02) :631-638
[6]   The Mre11 complex is required for ATM activation and the G2/M checkpoint [J].
Carson, CT ;
Schwartz, RA ;
Stracker, TH ;
Lilley, CE ;
Lee, DV ;
Weitzman, MD .
EMBO JOURNAL, 2003, 22 (24) :6610-6620
[7]   TARGETING OF ADENOVIRUS E1A AND E4-ORF3 PROTEINS TO NUCLEAR MATRIX-ASSOCIATED PML BODIES [J].
CARVALHO, T ;
SEELER, JS ;
OHMAN, K ;
JORDAN, P ;
PETTERSSON, U ;
AKUSJARVI, G ;
CARMOFONSECA, M ;
DEJEAN, A .
JOURNAL OF CELL BIOLOGY, 1995, 131 (01) :45-56
[8]   A functional complex of adenovirus proteins E1B-55kDa and E4orf6 is necessary to modulate the expression level of p53 but not its transcriptional activity [J].
Cathomen, T ;
Weitzman, MD .
JOURNAL OF VIROLOGY, 2000, 74 (23) :11407-11412
[9]   The Mre11 complex: At the crossroads of DNA repair and checkpoint signalling [J].
D'Amours, D ;
Jackson, SP .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2002, 3 (05) :317-327
[10]   Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure [J].
Doucas, V ;
Ishov, AM ;
Romo, A ;
Juguilon, H ;
Weitzman, MD ;
Evans, RM ;
Maul, GG .
GENES & DEVELOPMENT, 1996, 10 (02) :196-207