The U.S. Air Force Weather Agency's mesoscale ensemble: scientific description and performance results

被引:78
作者
Hacker, J. P. [1 ]
Ha, S. -Y. [2 ]
Snyder, C. [2 ]
Berner, J. [2 ]
Eckel, F. A. [3 ]
Kuchera, E. [4 ]
Pocernich, M. [2 ]
Rugg, S. [4 ]
Schramm, J. [2 ]
Wang, X. [5 ]
机构
[1] USN, Postgrad Sch, Monterey, CA 93943 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[3] NOAA, Natl Weather Serv, Off Sci & Technol, Silver Spring, MD 20910 USA
[4] USAF, Weather Agcy, Bellevue, NE USA
[5] Univ Oklahoma, Norman, OK 73019 USA
基金
美国国家科学基金会;
关键词
DATA ASSIMILATION SCHEME; KALMAN FILTER; MODEL; PERTURBATIONS; PREDICTIONS; CONVECTION; TRANSFORM; PHYSICS; SYSTEM;
D O I
10.1111/j.1600-0870.2010.00497.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This work evaluates several techniques to account for mesoscale initial-condition (IC) and model uncertainty in a short-range ensemble prediction system based on the Weather Research and Forecast (WRF) model. A scientific description and verification of several candidate methods for implementation in the U.S. Air Force Weather Agency mesoscale ensemble is presented. Model perturbation methods tested include multiple parametrization suites, land-surface property perturbations, perturbations to parameters within physics schemes and stochastic 'backscatter' stream-function perturbations. IC perturbations considered include perturbed observations in 10 independent WRF-3DVar cycles and the ensemble-transform Kalman filter (ETKF). A hybrid of ETKF (for IC perturbations) and WRF-3DVar (to update the ensemble mean) is also tested. Results show that all of the model and IC perturbation methods examined are more skilful than direct dynamical downscaling of the global ensemble. IC perturbations are most helpful during the first 12 h of the forecasts. Physical parametrization diversity appears critical for boundary-layer forecasts. In an effort to reduce system complexity by reducing the number of suites of physical parametrizations, a smaller set of parametrization suites was combined with perturbed parameters and stochastic backscatter, resulting in the most skilful and statistically consistent ensemble predictions.
引用
收藏
页码:625 / 641
页数:17
相关论文
共 60 条
[1]   A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System [J].
Berner, J. ;
Shutts, G. J. ;
Leutbecher, M. ;
Palmer, T. N. .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2009, 66 (03) :603-626
[2]  
BERNER J, 2011, MON WEA REV IN PRESS
[3]  
Bishop CH, 1999, J ATMOS SCI, V56, P1748, DOI 10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO
[4]  
2
[5]   The MOGREPS short-range ensemble prediction system [J].
Bowler, Neill E. ;
Arribas, Alberto ;
Mylne, Kenneth R. ;
Robertson, Kelvyn B. ;
Beare, Sarah E. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2008, 134 (632) :703-722
[7]  
Burgers G, 1998, MON WEATHER REV, V126, P1719, DOI 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO
[8]  
2
[9]   Contributions of mixed physics versus perturbed initial/lateral boundary conditions to ensemble-based precipitation forecast skill [J].
Clark, Adam J. ;
Gallus, William A., Jr. ;
Chen, Tslng-Chang .
MONTHLY WEATHER REVIEW, 2008, 136 (06) :2140-2156
[10]   Diagnosis of observation, background and analysis-error statistics in observation space [J].
Desroziers, G. ;
Berre, L. ;
Chapnik, B. ;
Poli, P. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) :3385-3396